The pea (Pisum sativum L.) is one of the more important legume crops produced globally. We studied the structure and genetic diversity in a collection of 50 pea accessions with 16 simple sequence repeat (SSR) markers, whose average polymorphic information content (PIC) was 0.62. The SSR markers amplified a total of 28 alleles with an average of 4 alleles per locus, with locus AB71 and D21 amplifying the largest number of alleles (6). The observed heterozygosity (Ho) was 0.09±0.08 and the expected heterozygosity (He) was 0.42, indicating an elevated level of inbreeding (Fis = 0.60). The genetic relationships were inferred with a similarity index (DICE) and a bayesian analysis (STRUCTURE), detecting 2 clusters for the genotypes, with a high similarity of the morphological characteristics of each genotype. The results of this study will be useful for the creation of future breeding programs.The pea (Pisum sativum L.) is one of the more important legume crops produced globally. We studied the structure and genetic diversity in a collection of 50 pea accessions with 16 simple sequence repeat (SSR) markers, whose average polymorphic information content (PIC) was 0.62. The SSR markers amplified a total of 28 alleles with an average of 4 alleles per locus, with locus AB71 and D21 amplifying the largest number of alleles (6). The observed heterozygosity (Ho) was 0.09±0.08 and the expected heterozygosity (He) was 0.42, indicating an elevated level of inbreeding (Fis = 0.60). The genetic relationships were inferred with a similarity index (DICE) and a bayesian analysis (STRUCTURE), detecting 2 clusters for the genotypes, with a high similarity of the morphological characteristics of each genotype. The results of this study will be useful for the creation of future breeding programs.
The influence of elevation on natural terrestrial ecosystems determines the arrangements of microbial communities in soils to be associated with biotic and abiotic factors. To evaluate changes of fungi and bacteria at the community level along an elevational gradient (between 1000 and 3800 m.a.s.l.), physicochemical measurements of soils, taxonomic identifications of plants, and metabarcoding sequences of the 16S rRNA gene for bacteria and the ITS1 region for fungi were obtained. The bacterial taxonomic composition showed that Acidobacteriota increased in abundance with elevation, while Actinobacteriota and Verrucomicrobiota decreased. Furthermore, Firmicutes and Proteobacteria maintained maximum levels of abundance at intermediate elevations (1200 and 2400 m.a.s.l.). In fungi, Ascomycota was more abundant at higher elevations, Basidiomycota tended to dominate at lower elevations, and Mortierellomycota had a greater presence at intermediate sites. These results correlated with the edaphic parameters of decreasing pH and increasing organic carbon and available nitrogen with elevation. In addition, the Shannon index found a greater diversity in bacteria than fungi, but both showed a unimodal pattern with maximum values in the Andean Forest at 2400 m.a.s.l. Through the microbial characterization of the ecosystems, the elevational gradient, soil properties, and vegetation were found to exert significant effects on microbial communities and alpha diversity indices. We conclude that the most abundant soil microorganisms at the sampling points differed in abundance and diversity according to the variations in factors influencing ecological communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.