In fungal hyphal cells, intracellular membrane trafficking is constrained by the relatively long intracellular distances and the mode of growth, exclusively by apical extension. Endocytosis plays a key role in hyphal tip growth, which involves the coupling of secretory membrane delivery to the apical region with subapical compensatory endocytosis. However, the identity, dynamics and function of filamentous fungal endosomal compartments remain largely unexplored. Aspergillus nidulans RabA Rab5 localizes to a population of endosomes that show long range bidirectional movement on microtubule (MT) tracks and are labelled with FM4-64 shortly after dye internalization. RabA Rab5 membranes do not overlap with largely static mature endosomes/vacuoles. Impaired delivery of dynein to the MT plus ends or downregulation of cytoplasmic dynein using the dynein heavy chain nudA1 ts mutation results in accumulation of RabA Rab5 endosomal membranes in an abnormal NudA1 compartment at the tip, strongly supporting the existence in A. nidulans hyphal tips of a dynein loading region. We show that the SynA synaptobrevin endocytic recycling cargo traffics through this region, which strongly supports the contention that polarized hyphal growth involves the association of endocytic recycling with the plus ends of MTs located at the tip, near the endocytic internalization collar.
Of the two Aspergillus early endosomal Rab5 paralogues, RabB recruits, in its GTP conformation, Vps19, Vps45, and Vps34, and the CORVET complex and couples acquisition of PI(3)P degradative identity with the long-distance movement of early endosomes. RabA also recruits CORVET, albeit less efficiently. The simultaneous loss of RabA and RabB is lethal.
Actin polymerization and assembly into stress fibers (SFs) is central to many cellular processes. However, how SFs form in response to the mechanical interaction of cells with their environment is not fully understood. Here we have identified Piezo2 mechanosensitive cationic channel as a transducer of environmental physical cues into mechanobiological responses. Piezo2 is needed by brain metastatic cells from breast cancer (MDA-MB-231-BrM2) to probe their physical environment as they anchor and pull on their surroundings or when confronted with confined migration through narrow pores. Piezo2-mediated Ca influx activates RhoA to control the formation and orientation of SFs and focal adhesions (FAs). A possible mechanism for the Piezo2-mediated activation of RhoA involves the recruitment of the Fyn kinase to the cell leading edge as well as calpain activation. Knockdown of Piezo2 in BrM2 cells alters SFs, FAs, and nuclear translocation of YAP; a phenotype rescued by overexpression of dominant-positive RhoA or its downstream effector, mDia1. Consequently, hallmarks of cancer invasion and metastasis related to RhoA, actin cytoskeleton, and/or force transmission, such as migration, extracellular matrix degradation, and Serpin B2 secretion, were reduced in cells lacking Piezo2.
The p25 subunit of the dynactin complex is required for the interaction between cytoplasmic dynein and early endosomes but is not required for dynein-mediated nuclear distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.