The coordination of complex vocal behaviors like human speech and oscine birdsong requires fine interactions between sensory and motor programs, the details of which are not completely understood. Here, we show that in sleeping male zebra finches (), the activity of the song system selectively evoked by playbacks of their own song can be detected in the syrinx. Electromyograms (EMGs) of a syringeal muscle show playback-evoked patterns strikingly similar to those recorded during song execution, with preferred activation instants within the song. Using this global and continuous readout, we studied the activation dynamics of the song system elicited by different auditory stimuli. We found that synthetic versions of the bird's song, rendered by a physical model of the avian phonation apparatus, evoked very similar responses, albeit with lower efficiency. Modifications of autogenous or synthetic songs reduce the response probability, but when present, the elicited activity patterns match execution patterns in shape and timing, indicating an all-or-nothing activation of the vocal motor program.
Behavior emerges from the interaction between the nervous system and peripheral devices. In the case of birdsong production, a delicate and fast control of several muscles is required to control the configuration of the syrinx (the avian vocal organ) and the respiratory system. In particular, the syringealis ventralis muscle is involved in the control of the tension of the vibrating labia and thus affects the frequency modulation of the sound. Nevertheless, the translation of the instructions (which are electrical in nature) into acoustical features is complex and involves nonlinear, dynamical processes. In this work, we present a model of the dynamics of the syringealis ventralis muscle and the labia, which allows calculating the frequency of the generated sound, using as input the electrical activity recorded in the muscle. In addition, the model provides a framework to interpret inter-syllabic activity and hints at the importance of the biomechanical dynamics in determining behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.