Abstract:The estimation of heat conduction properties has considerable importance in the characterization of bamboo with respect to its potential use as an alternative construction material. Even though traditional methods such as hot plates have successfully measured thermal parameters, like thermal diffusivity and conductivity in bamboo samples, it is still necessary to transform the cylindrical bamboo specimen into a piece with special geometry and size. This requirement makes this method impractical in applications where several bamboo specimens need to be measured in their original cylindrical shape. This paper presents the estimation of thermo-physical parameters k and ρc p in Guadua angustifolia kunth (Guadua a.k.) bamboo through nonlinear least square optimization and infrared thermography. A sensitivity analysis was carried out to determine how the temperature on the bamboo surface is affected by changes in the convection coefficient h, thermal conductivity k, and volumetric heat capacity ρc p . In spite of the nonlinearity and high correlation in the parameters of the inverse heat conduction problem (IHCP), the estimation of such parameters is robust and consistent with those reported in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.