Geophysical methods have a varying degree of potential for detailed characterization of landslides and their dynamics. In this study, the application of four well-established seismic-based geophysical techniques, namely Ambient Noise Interferometry (ANI), Horizontal to Vertical Spectral Ratio (HVSR), Multi-Channel Analysis of Surface Waves (MASW) and Nanoseismic Monitoring (NM), were considered to examine their suitability for landslide characterization and monitoring the effect of seasonal variation on slope mass. Furthermore, other methods such as Ground Penetrating Radar (GPR) and DC Resistivity through Electrical Resistivity Tomography (ERT) were also used for comparison purpose. The advantages and limitations of these multiple techniques were exemplified by a case study conducted on Sobradinho landslide in Brazil. The study revealed that the geophysical characterization of the landslide using traditional techniques (i.e., GPR, ERT and MASW) were successful in (i) the differentiation between landslide debris and other Quaternary deposits, and (ii) the delineation of the landslide sliding surface. However, the innovative seismic based techniques, particularly ambient noise based (HVSR and ANI) and emitted seismic based (NM), were not very effective for the dynamic monitoring of landslide, which might be attributed to the short-time duration of the data acquisition campaigns. The HVSR was also unsuccessful in landslide site characterization i.e., identification of geometry and sliding surface. In particular, there was no clear evidence of the light seasonal variations, which could have been potentially detected from the physical parameters during the (short-time) ambient noise and microseismic acquisition campaigns. Nevertheless, the experienced integration of these geophysical techniques may provide a promising tool for future applications.
Recyclable cellulose loose-fill insulation has been commonly used in heavy timber construction for treating attic areas, under floors, and wall cavities. Through the kraft process, the unbleached cellulose adopts a texture characterized by small crumbs, forming a porous medium. In this work, different samples of a single layer of loose-fill cellulose insulation with different thicknesses were tested to measure their sound absorption properties, the airflow resistivity, and porosity for both dry and moist samples. The regression coefficients for an empirical model were calculated using a numerical optimization method. It is concluded that the model predicts the acoustical performance of this material well and that the sound absorption properties of the material are similar to those of mineral fiber-based materials.
Reactivation of a landslide is usually accompanied by microseismic signals emitted from the deforming soil mass. The reproduction of similar signals in a physical model test conducted under control conditions can allow researchers to explore and test such complicated signals to improve the prediction of full-scale failure. The present study investigates the similarity between the slidequakes (microseismicity) naturally emitted from an existing colluvial landslide (Sobradinho, Brazil) in response to rainfalls and the emissions generated by a pullout test of an expander body (EB) pile in tropical soil under controlled conditions. The microseismic signals emitted from both experimental sites (i.e. the landslide and the EB pile test) were recorded and compared. Data were acquired by mini-arrays of four short-period seismometers. For the signal nomenclature, a typological scheme was adopted, in which sonograms/spectral contents of the signals were used. As a result, short duration microseismic signals were observed during the pullout test. In contrast, at the Sobradinho landslide, the testing detected signals of different characteristics whose source mechanisms have remained ambiguous, mainly because of the short duration of the data campaigns. However, at the landslide, propagating events were observed that might be attributed to the energies generated by the river bedload during the heavy rains. The present study offers some insight into the pre-collapse dynamic behavior of unstable slopes in clayey formations.
The application of geophysical monitoring technologies may offer an opportunity to understand the dynamic of slopes in response to factors triggering their instability. In this study, Ambient Noise Interferometry was used as a monitoring approach on a man-made reduced-scale vertical slope and on a natural-scale landslide in Sobradinho (Brazil), under the influence of mechanical stress and rainfall, respectively. For both experiments, we adopted similar data acquisition system and processing workflow. After preprocessing of ambient seismic noise, the time-lapse changes were determined in terms of relative velocity changes using the moving window cross spectral technique. For the vertical slope, terrestrial laser scanning was also performed to detect crack or fissure generation. The prototype experiment results showed a decreasing trend of relative velocity changes and reached a minimum value of -0.6% at the end of the experiment. No change was detected on the digital elevation model that was computed from terrestrial laser scanning images, due to the absence of centimeter scale superficial fissures. At natural scale (Sobradinho landslide), no significant variation in relative velocity changes was detected for the rainy and non-rainy days, mainly because of the inadequate change in the degree of saturation, which was found within a relatively short period of data acquisition.
In this article, the mechanical parameters of characteristic soils of the city of Brasília are obtained, calibrated and validated for the Hardening Soil (HS) model, based on laboratory and field test results obtained in previous research studies conducted in the Experimental Field of the University of Brasília (CEGUnB). The strength and compressibility parameters are obtained from triaxial CU tests (with isotropic and anisotropic consolidation) and one-dimensional consolidation tests, respectively. The obtained parameters are calibrated via explicit numerical modeling using the finite element method and the SoilTest module of Plaxis software. After the parameters are evaluated and calibrated, a geotechnical model characterizing the city of Brasília for HS is proposed. Finally, this geotechnical model is validated through the numerical modeling of load testing on footings and piles conducted at the CEGUnB. It is concluded that the mechanical behavior of the Brasília soils under natural moisture conditions can be modeled using the HS model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.