The catalytic effects of complex minerals or meteorites are often mentioned as important factors for the origins of life. To assess the possible role of nanoconfinement within a catalyst consisting of montmorillonite (MMT) and the impact of local electric field on the formation efficiency of the simple hypothetical precursors of nucleic acid bases or amino acids, we performed ab initio Car–Parrinello molecular dynamics simulations. We prepared four condensed-phase systems corresponding to previously suggested prototypes of a primordial soup. We monitored possible chemical reactions occurring within gas-like bulk and MMT-confined four simulation boxes on a 20-ps time scale at 1 atm and 300 K, 400 K, and 600 K. Elevated temperatures did not affect the reactivity of the elementary components of the gas-like boxes considerably; however, the presence of the MMT nanoclay substantially increased the formation probability of new molecules. Approximately 20 different new compounds were found in boxes containing carbon monoxide or formaldehyde molecules. This observation and an analysis of the atom–atom radial distribution functions indicated that the presence of Ca2+ ions at the surface of the internal MMT cavities may be an important factor in the initial steps of the formation of complex molecules at the early stages of the Earth’s history.
In the last decade of research in the origins of life, there has been an increase in the interest on theoretical molecular modeling methods aimed to improve the accuracy and speed of the algorithms that solve the molecular mechanics and chemical reactions of the matter. Research on the scenarios of prebiotic chemistry has also advanced. The presented work attempts to discuss the latest computational techniques and trends implemented so far. Although it is difficult to cover the full extent of the current publications, we tried to orient the reader into the modern tendencies and challenges faced by those who are in the origins of life field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.