SUMMARY
T cell differentiation into distinct functional effector and inhibitory subsets is regulated in part by the cytokine environment present at the time of antigen recognition. Here, we show that hypoxia-inducible factor 1 (HIF-1), a key metabolic sensor, regulates the balance between T regulatory (Treg) and TH17 differentiation. HIF-1α enhances TH17 development through direct transcriptional activation of RORvt, and via tertiary complex formation with RORvt and p300 recruitment to the IL17 promoter, thereby regulating TH17 signature genes. Concurrently, HIF-1α attenuates Treg development by binding Foxp3 and targeting it for proteasomal degradation. Importantly this regulation occurs under both normoxic and hypoxic conditions. Mice with HIF-1α deficient T cells are resistant to induction of TH17-dependent experimental autoimmune encephalitis associated with diminished TH17 and increased Treg cells. These findings highlight the importance of metabolic cues in T cell fate determination and suggest that metabolic modulation could ameliorate certain T cell-based immune pathologies.
Stimulator of interferon genes (STING) is a cytosolic receptor that senses both exogenous and endogenous cytosolic cyclic dinucleotides (CDNs), activating TBK1/IRF3 (interferon regulatory factor 3), NF-κB (nuclear factor κB), and STAT6 (signal transducer and activator of transcription 6) signaling pathways to induce robust type I interferon and proinflammatory cytokine responses. CDN ligands were formulated with granulocyte-macrophage colony-stimulating factor (GM-CSF)–producing cellular cancer vaccines—termed STINGVAX—that demonstrated potent in vivo antitumor efficacy in multiple therapeutic models of established cancer. We found that rationally designed synthetic CDN derivative molecules, including one with an Rp,Rp dithio diastereomer and noncanonical c[A(2′,5′)pA(3′,5′)p] phosphate bridge structure, enhanced antitumor efficacy of STINGVAX in multiple aggressive therapeutic models of established cancer in mice. Antitumor activity was STING-dependent and correlated with increased activation of dendritic cells and tumor antigen–specific CD8+ T cells. Tumors from STINGVAX-treated mice demonstrated marked PD-L1 (programmed death ligand 1) up-regulation, which was associated with tumor-infiltrating CD8+IFNγ+ T cells. When combined with PD-1 (programmed death 1) blockade, STINGVAX induced regression of palpable, poorly immunogenic tumors that did not respond to PD-1 blockade alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.