Breaking of structural symmetries of nanomagnetic systems is of great interest for the development of ultralow-power spintronic devices. The structural asymmetry in various magnetic heterostructures has been engineered to reveal novel fundamental interactions between electric currents and magnetization, resulting in spin-orbit-torques (SOTs) on the magnetization [1][2][3][4][5][6] , which are both fundamentally important and technologically promising for device applications. Such SOTs have been used to realize current-induced magnetization switching [2][3][4]7 and domain-wall 3 motion [8][9][10] in recent experiments. Typical heterostructures exhibiting SOTs consist of a ferromagnet (F) with a heavy nonmagnetic metal (NM) having strong spin-orbit coupling on one side, and an insulator (I) on the other side (referred to as NM/F/I structures, shown schematically in Fig. 1a, which break mirror symmetry in the growth direction). In terms of device applications, the use of SOTs in NM/F/I structures allows for a significantly lower write current compared to regular spin-transfer-torque (STT) devices 4 . It can greatly improve energy efficiency and scalability [1][2][3][4][5]11 for new SOT-based devices such as magnetic random access memory (SOT-MRAM), going beyond state-of-the-art STT-MRAM.For practical applications, a critical requirement to achieve high-density SOT memory is the ability to perform SOT-induced switching without the use of external magnetic fields, in particular for perpendicularly-magnetized ferromagnets, which show better scalability and thermal stability as compared to the in-plane case 12 .However, there are currently no practical solutions that meet this requirement. In NM/F/I heterostructures studied so far, the form of the resultant current-induced SOT alone does not allow for deterministic switching of a perpendicular ferromagnet, requiring application of an additional external in-plane magnetic field to switch the perpendicular magnetization [2][3][4] . (This is a very general feature of SOT devices, which can be explained by symmetry-based arguments, as discussed below). In such experiments, the external field allows for each current direction to favor a particular orientation for the out-of-plane component of magnetization, thereby resulting in deterministic perpendicular switching. However, this external field is undesirable 4 from a practical point of view. For device applications, it also reduces the thermal stability of the perpendicular magnet by lowering the zero-current energy barrier between the stable perpendicular states, resulting in a shorter retention time if used for memory.This work provides a solution to eliminate the use of external magnetic fields, bringing SOT-based spintronic devices such as SOT-MRAM closer to practical application. We present a new NM/F/I structure, which provides a novel spin-orbit torque, resulting in zero-field current-induced switching of perpendicular magnetization. Our device consists of a stack of Ta/Co 20 Fe 60 B 20 /TaO x layers, but also has a...
The quest for novel low-dissipation devices is one of the most critical for the future of semiconductor technology and nano-systems. The development of a low-power, universal memory will enable a new paradigm of non-volatile computation. Here we consider STT-RAM as one of the emerging candidates for low-power non-volatile memory. We show different configurations for STT memory and demonstrate strategies to optimize key performance parameters such as switching current and energy. The energy and scaling limits of STT-RAM are discussed, leading us to argue that alternative writing mechanisms may be required to achieve ultralow power dissipation, a necessary condition for direct integration with CMOS at the gate level for non-volatile logic purposes. As an example, we discuss the use of the giant spin Hall effect as a possible alternative to induce magnetization reversal in magnetic tunnel junctions using pure spin currents. Further, we concentrate on magnetoelectric effects, where electric fields are used instead of spin-polarized currents to manipulate the nanomagnets, as another candidate solution to address the challenges of energy efficiency and density. The possibility of an electric-field-controlled magnetoelectric RAM as a promising candidate for ultralow-power non-volatile memory is discussed in the light of experimental data demonstrating voltage-induced switching of the magnetization and reorientation of the magnetic easy axis by electric fields in nanomagnets.
We demonstrate excitation of ferromagnetic resonance in CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) by the combined action of voltage-controlled magnetic anisotropy (VCMA) and spin transfer torque (ST). Our measurements reveal that GHz-frequency VCMA torque and ST in low-resistance MTJs have similar magnitudes, and thus that both torques are equally important for understanding high-frequency voltage-driven magnetization dynamics in MTJs. As an example, we show that VCMA can increase the sensitivity of an MTJ-based microwave signal detector to the sensitivity level of semiconductor Schottky diodes.
We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltageinduced switching. The measured performance enables integration with same-size CMOS transistors in compact memory and logic integrated circuits. V
In this work, we report on the demonstration of voltage-driven spin wave excitation, where spin waves are generated by multiferroic magnetoelectric (ME) cell transducers driven by an alternating voltage, rather than an electric current. A multiferroic element consisting of a magnetostrictive Ni film and a piezoelectric [Pb(Mg 1/3 Nb 2/3 )O 3 ] (1Àx) -[PbTiO 3 ] x substrate was used for this purpose. By applying an AC voltage to the piezoelectric, an oscillating electric field is created within the piezoelectric material, which results in an alternating strain-induced magnetic anisotropy in the magnetostrictive Ni layer. The resulting anisotropy-driven magnetization oscillations propagate in the form of spin waves along a 5 lm wide Ni/NiFe waveguide. Control experiments confirm the strain-mediated origin of the spin wave excitation. The voltage-driven spin wave excitation, demonstrated in this work, can potentially be used for low-dissipation spin wave-based logic and memory elements. V C 2014 AIP Publishing LLC. [http://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.