Aqueous two-phase extraction has recently been demonstrated as a new method to separate single-wall carbon nanotubes (SWCNTs). In this work, we determined that the mechanism of separation is driven by the hydrophobicity of the surfactant, or combination of surfactants, at the SWCNT surface. This knowledge allowed us to develop a simple approach for obtaining highly enriched single-chirality suspensions in only 1 or 2 steps. These results were obtained by strategically combining multiple surfactants with different diameter-dependent binding affinities for SWCNTs and salts that readjust the surfactant structure within the mixed micelle surrounding the SWCNTs. The procedure is successfully applied to SWCNTs from different sources (CoMoCAT and HiPco) with various diameter distributions (from 0.53 to 1.2 nm). Each separation step is characterized by optical absorption, resonant Raman, and photoluminescence excitation spectroscopies. By determining the SWCNT sorting mechanism, we were able to develop a new set of parameters that separated another chirality.
The Condon approximation is widely applied in molecular and condensed matter spectroscopy and states that electronic transition dipoles are independent of nuclear positions. This approximation is related to the Franck-Condon principle, which in its simplest form holds that electronic transitions are instantaneous on the time scale of nuclear motion. The Condon approximation leads to a long-held assumption in Raman spectroscopy of carbon nanotubes: intensities arising from resonance with incident and scattered photons are equal. Direct testing of this assumption has not been possible due to the lack of homogeneous populations of specific carbon nanotube chiralities. Here, we present the first complete Raman excitation profiles (REPs) for the nanotube G band for 10 pure semiconducting chiralities. In contrast to expectations, a strong asymmetry is observed in the REPs for all chiralities, with the scattered resonance always appearing weaker than the incident resonance. The observed behavior results from violation of the Condon approximation and originates in changes in the electronic transition dipole due to nuclear motion (non-Condon effect), as confirmed by our quantum chemical calculations. The agreement of our calculations with the experimental REP asymmetries and observed trends in family dependence indicates the behavior is intrinsic.
The search for environmentally clean energy sources has spawned a wave of research into the use of carbon nanomaterials for photovoltaic applications. In particular, research using semiconducting single-walled carbon nanotubes has undergone dramatic transformations due to the availability of high quality samples through colloidal separation techniques. This has led to breakthrough discoveries on how energy and charge transport occurs in these materials and points to applications in energy harvesting. We present a review of the relevant photophysics of carbon nanotubes that dictate processes important for integration as active and passive material elements in thin film photovoltaics. Fundamental processes ranging from light absorption and internal conversion to exciton transport and dissociation are discussed in detail from both a spectroscopic and a device perspective. We also give a perspective on the future of these fascinating materials to be used as active and passive material elements in photovoltaics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.