The unusually high quality of census data for large waterbirds in Europe facilitates the study of how population change varies across a broad geographical range and relates to global change. The wintering population of the greylag goose Anser anser in the Atlantic flyway spanning between Sweden and Spain has increased from 120 000 to 610 000 individuals over the past three decades, and expanded its wintering range northwards. Although population sizes recorded in January have increased in all seven countries in the wintering range, we found a pronounced northwards latitudinal effect in which the rate of increase is higher at greater latitudes, causing a constant shift in the centre of gravity for the spatial distribution of wintering geese. Local winter temperatures have a strong influence on goose numbers but in a manner that is also dependent on latitude, with the partial effect of temperature (while controlling for the increasing population trend between years) being negative at the south end and positive at the north end of the flyway. Contrary to assumptions in the literature, the expansion of crops exploited by greylag geese has made little contribution to the increases in population size. Only in one case (expansion of winter cereals in Denmark) did we find evidence of an effect of changing land use. The expanding and shifting greylag population is likely to have increasing impacts on habitats in northern Europe during the course of this century.
Human presence at intertidal areas could impact coastal biodiversity, including migratory waterbird species and the ecosystem services they provide. Assessing this impact is therefore essential to develop management measures compatible with migratory processes and associated biodiversity. Here, we assess the effects of human presence on the foraging opportunities of Hudsonian godwits (Limosa haemastica, a trans-hemispheric migratory shorebird) during their non-breeding season on Chiloé Island, southern Chile. We compared bird density and time spent foraging in two similar bays with contrasting disturbance levels: human presence (mostly seaweed harvesters accompanied by dogs) was on average 0.9±0.4 people per 10 ha in the disturbed bay, whereas it was negligible (95% days absent) in the non-disturbed bay. Although overall abundances were similar between bays, godwit density was higher in the non-disturbed bay throughout the low tide period. Both days after the start of the non-breeding season and tidal height significantly affected godwit density, with different effects in either bay. Time spent foraging was significantly higher in the non-disturbed bay (86.5±1.1%) than in the disturbed one (81.3±1.4%). As expected, godwit density significantly decreased with the number of people and accompanying dogs in the disturbed bay. Our results indicate that even a low density of people and dogs can significantly reduce the foraging opportunities of shorebirds. These constraints, coupled with additional flushing costs, may negatively affect godwits’ pre-migratory fattening. Hence, as a first step we suggest limiting human presence within bays on Chiloé to 1 person per 10 ha and banning the presence of accompanying dogs in sensitive conservation areas.
The high metabolic activity associated with endurance flights and intense fuelling of migrant birds may produce large quantities of reactive oxygen species, which cause oxidative damage. Yet it remains unknown how long-lived birds prepare for oxidative challenges prior to extreme flights. We combined blood measurements of oxidative status and enzyme and fat metabolism in Hudsonian godwits (Limosa haemastica, a long-lived shorebird) before they embarked on non-stop flights longer than 10,000 km during their northbound migrations. We found that godwits increased total antioxidant capacity (TAC) and reduced oxidative damage (TBARS) as the pre-migratory season progressed, despite higher basal metabolic rates before departure. Elevations in plasma β-hydroxybutyrate and uric acid suggest that lipid and protein breakdown supports energetic requirements prior to migration. Significant associations between blood mitochondrial cytochrome-c oxidase and plasma TAC (negative) and TBARS (positive) during winter indicate that greater enzyme activity can result in greater oxidative damage and antioxidant responses. However enzyme activity remained unchanged between winter and premigratory stages, so birds may be unable to adjust metabolic enzyme activity in anticipation of future demands. These results indicate that godwits enhance their oxidative status during migratory preparation, which might represent an adaptation to diminish the physiological costs of long-distance migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.