The acyl-CoA synthetase 4 (ACSL4), which esterify mainly arachidonic acid (AA) into acyl-CoA, is increased in breast, colon and hepatocellular carcinoma. The transfection of MCF-7 cells with ACSL4 cDNA transforms the cells into a highly aggressive phenotype and controls both lipooxygenase-5 (LOX-5) and cyclooxygenase-2 (COX-2) metabolism of AA, suggesting a causal role of ACSL4 in tumorigenesis. We hypothesized that ACSL4, LOX-5 and COX-2 may constitute potential therapeutic targets for the control of tumor growth. Therefore, the aim of this study was to use a tetracycline Tet-Off system of MCF-7 xenograft model of breast cancer to confirm the effect of ACSL4 overexpression on tumor growth in vivo. We also aim to determine whether a combinatorial inhibition of the ACSL4-LOX-COX-2 pathway affects tumor growth in vivo using a xenograft model based on MDA-MB-231 cells, a highly aggressive breast cancer cell line naturally overexpressing ACSL4. The first novel finding is that stable transfection of MCF-7 cells with ACSL4 using the tetracycline Tet-Off system of MCF-7 cells resulted in development of growing tumors when injected into nude mice. Tumor xenograft development measured in animals that received doxycycline resulted in tumor growth inhibition. The tumors presented marked nuclear polymorphism, high mitotic index and low expression of estrogen and progesterone receptor. These results demonstrate the transformational capacity of ACSL4 overexpression. We examined the effect of a combination of inhibitors of ACSL4, LOX-5 and COX-2 on MDA-MB-231 tumor xenografts. This treatment markedly reduced tumor growth in doses of these inhibitors that were otherwise ineffective when used alone, indicating a synergistic effect of the compounds. Our results suggest that these enzymes interact functionally and form an integrated system that operates in a concerted manner to regulate tumor growth and consequently may be potential therapeutic targets for the control of proliferation as well as metastatic potential of cancer cells.
Desmopressin (dDAVP) is a safe haemostatic agent with previously reported antitumour activity. It acts as a selective agonist for the V2 vasopressin membrane receptor (V2r) present on tumour cells and microvasculature. The purpose of this study was to evaluate the novel peptide derivative [V4Q5]dDAVP in V2r-expressing preclinical mouse models of breast cancer. We assessed antitumour effects of [V4Q5]dDAVP using human MCF-7 and MDA-MB-231 breast carcinoma cells, as well as the highly metastatic mouse F3II cell line. Effect on in vitro cancer cell growth was evaluated by cell proliferation and clonogenic assays. Cell cycle distribution was analysed by flow cytometry. In order to study the effect of intravenously administered [V4Q5]dDAVP on tumour growth and angiogenesis, breast cancer xenografts were generated in athymic mice. F3II cells were injected into syngeneic mice to evaluate the effect of [V4Q5]dDAVP on spontaneous and experimental metastatic spread. In vitro cytostatic effects of [V4Q5]dDAVP against breast cancer cells were greater than those of dDAVP, and associated with V2r-activated signal transduction and partial cell cycle arrest. In MDA-MB-231 xenografts, [V4Q5]dDAVP (0.3 μg/kg, thrice a week) reduced tumour growth and angiogenesis. Treatment of F3II mammary tumour-bearing immunocompetent mice resulted in complete inhibition of metastatic progression. [V4Q5]dDAVP also displayed greater antimetastatic efficacy than dDAVP on experimental lung colonisation by F3II cells. The novel analogue was well tolerated in preliminary acute toxicology studies, at doses ≥300-fold above that required for anti-angiogenic/antimetastatic effects. Our data establish the preclinical activity of [V4Q5]dDAVP in aggressive breast cancer, providing the rationale for further clinical trials.
Desmopressin (DDAVP), a synthetic peptide analog of vasopressin, is a safe antidiuretic and hemostatic compound that acts as a selective agonist for the vasopressin V2 membrane receptor. It is known that DDAVP can inhibit progression of residual metastatic cells and also improves chemotherapy effects in preclinical breast cancer models. Here, we explored the effects of DDAVP on tumor angiogenesis using the aggressive F3II mammary carcinoma in syngeneic Balb/c mice. Intravenous administration of the compound (2 μg/kg) markedly decreased vascularization of growing subcutaneous tumors, as well as inhibited the early angiogenic response around intradermal inoculation sites. In vitro studies confirmed the presence of vasopressin V2 receptors on F3II cells and a modest antiproliferative activity of DDAVP. Interestingly, conditioned media from F3II monolayers exposed to low doses of DDAVP (100 nM) significantly increased angiostatin formation in the presence of purified plasminogen. Such increase was associated with an enhancement of tumor-secreted urokinase-type plasminogen activator, suggesting the proteolytic conversion of plasminogen to angiostatin in vitro. Similar results were observed with the MCF-7 human breast carcinoma, a cell line known to express the vasopressin V2 receptor. No direct effects of DDAVP (100 nM–1 μM) were found on capillary-like tube formation by human microvascular cells HMVEC. Our studies showed that DDAVP induces anti-angiogenic effects that may be associated with the generation of angiostatin by tumor cells. Further preclinical studies with DDAVP and other vasopressin analogs are warranted to determine their potential in cancer management.
Metastatic disease is responsible for most of cancer lethality. A main obstacle for therapy of advanced cancers is that the outcome of metastasis depends on a complex interplay between malignant and host cells. The perioperative period represents an underutilized window of opportunity for cancer treatment where tumor-host interactions can be modulated, reducing the risk of local recurrences and distant metastases. Blood-saving agents are attractive compounds to be administered during tumor surgery. Desmopressin (DDAVP) is a safe and convenient hemostatic peptide with proved antimetastastic properties in experimental models and veterinary clinical trials. The compound seems to induce a dual angiostatic and antimetastatic effect, breaking the cooperative function of cancer cells and endothelial cells during residual tumor progression. DDAVP is therefore an interesting lead compound to develop novel synthetic peptide analogs with enhanced antitumor properties.
We demonstrate that treatment with low micromolar concentrations of CIGB-300 caused a drastic reduction of adhesion, migration and invasion of lung cancer cells. Reduced invasiveness after CIGB-300 incubation was associated with decreased proteolytic activity of tumor cell-conditioned medium. In vivo, intravenous administration of CIGB-300 (10mg/kg) markly decreased lung colonization and metastasis development of 3LL cells. Interestingly, after 5days of systemic treatment with CIGB-300, tumor cell-driven neovascularization was significantly reduced in comparison to control group. Altogether our data suggest an important role of CK2 in lung tumor development, suggesting a potential use of CIGB-300 as a novel therapeutic agent against lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.