SummaryThe high-output pathway of nitric oxide production helps protect mice from infection by several pathogens, including Mycobacterium tuberculosis. However, based on studies of cells cultured from blood, it is controversial whether human mononuclear phagocytes can express the corresponding inducible nitric oxide synthase (iNOS; NOS2). The present study examined alveolar macrophages fixed directly after bronchopulmonary lavage. An average of 65% of the macrophages from 11 of 11 patients with untreated, culture-positive pulmonary tuberculosis reacted with an antibody documented herein to be monospecific for human NOS2. In contrast, a mean of 10% ofbronchoalveolar lavage cells were positive from each of five clinically normal subjects. Tuberculosis patients' macrophages displayed diaphorase activity in the same proportion that they stained for NOS2, under assay conditions wherein the diaphorase reaction was strictly dependent on NOS2 expression. Bronchoalveolar lavage specimens also contained NOS2 mRNA. Thus, macrophages in the lungs of people with clinically active Mycobacterium tuberculosis infection often express catalytically competent NOS2.
Immune factors influencing progression to active tuberculosis (TB) remain poorly defined. In this study, we investigated the expression of immunoregulatory cytokines and receptors by using lung bronchoalveolar lavage cells obtained from patients with pulmonary TB, patients with other lung diseases (OLD patients), and healthy volunteers (VOL) by using reverse transcriptase PCR, a transforming growth factor  (TGF-) bioactivity assay, and an enzyme immunoassay. TB patients were significantly more likely than OLD patients to coexpress TGF- receptor I (RI) and RII mRNA, as well as interleukin-10 (IL-10) mRNA (thereby indicating the state of active gene transcription in the alveolar cells at harvest). In contrast, gamma interferon (IFN-␥) and IL-2 mRNA was seen in both TB and OLD patients. Likewise, significantly elevated pulmonary steady-state protein levels of IL-10, IFN-␥, and bioactive TGF- were found in TB patients versus those in OLD patients and VOL. These data suggest that the combined production of the immunosuppressants IL-10 and TGF-, as well as coexpression of TGF- RI and RII (required for cellular response to TGF-), may act to down-modulate host anti-Mycobacterium tuberculosis immunity and thereby allow uncontrolled bacterial replication and overt disease. Delineating the underlying mechanisms of M. tuberculosis-triggered expression of these immune elements may provide a molecular-level understanding of TB immunopathogenesis.
BackgroundCongenital heart defects (CHD), as the most common congenital anomaly, have been reported to be frequently associated with pathogenic copy number variants (CNVs). Currently, patients with CHD are routinely offered chromosomal microarray (CMA) testing, but the diagnostic yield of CMA on CHD patients has not been extensively evaluated based on a large patient cohort. In this study, we retrospectively assessed the detected CNVs in a total of 514 CHD cases (a 422-case clinical cohort from Boston Children's Hospital (BCH) and a 92-case research cohort from Shanghai Children’s Medical Center (SCMC)) and conducted a genotype-phenotype analysis. Furthermore, genes encompassed in pathogenic/likely pathogenic CNVs were prioritized by integrating several tools and public data sources for novel CHD candidate gene identification.ResultsBased on the BCH cohort, the overall diagnostic yield of CMA testing for CHD patients was 12.8(pathogenic CNVs)-18.5% (pathogenic and likely pathogenic CNVs). The diagnostic yield of CMA for syndromic CHD was 14.1-20.6% (excluding aneuploidy cases), whereas the diagnostic yield for isolated CHD was 4.3-9.3%. Four recurrent genomic loci (4q terminal region, 15q11.2, 16p12.2 and Yp11.2) were more significantly enriched in cases than in controls. These regions are considered as novel CHD loci. We further identified 20 genes as the most likely novel CHD candidate genes through gene prioritization analysis.ConclusionThe high clinical diagnostic yield of CMA in this study provides supportive evidence for CMA as the first-line genetic diagnostic tool for CHD patients. The CNVs detected in our study suggest a number of CHD candidate genes that warrant further investigation.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-1127) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.