This paper presents an analysis of the optimal design of transmission shafts by adopting the approach of a novel continuous genetic algorithm. The optimization case study is formulated as a single-objective optimization problem whose objective function is the minimization of the total weight that results from the sum of all the sections in the shaft. Additionally, mechanical stresses and constructive characteristics are considered constraints in this case. The proposed optimization model corresponds to a nonlinear non-convex optimization problem which is numerically solved with a continuous variant of genetic algorithms. SKYCIV®and Autodesk Inventor®were used to verify the quality and robustness of the numerical results in this paper by means of simulation tools and analysis. The results obtained demonstrates that the methodology proposed reduce the complexity and improving the results obtained in comparison to conventional mechanical design.
This work presents the optimization of a Coandă-effect air ejector used widely in industry through computational fluid dynamics. This optimization was developed in ANSYS FLUENT® software V16.2. Two 3D models of the commercial ejector (ZH30-X185 by SMC®) were carried out for the simulation procedure, varying the size of the separation of 0.3 and 0.8 mm in the walls of the nozzle, which communicates the high-pressure region and the mixture zone. In the experiment designed, the feed pressure applied to the ejector take values of 0.20, 0.25, and 0.30 MPa and the dynamic fluid behavior was analyzed for the two geometries mentioned. For the numerical and fluid behavior analysis, a mesh study was conducted to guarantee the independence of the results with the number of discretization cells. The k-ε RNG turbulence model was implemented with treatment of walls, solving in stationary manner the phenomenon occurring within it, given that the temporal evolution is quite rapid. Increased secondary mass flow (extracted) relations with respect to the primary mass flow (injected) were found when the separation communicating the high-pressure zone and the mixture zone diminished. With increased feed pressure of the primary flow, a decrease was found in the secondary mass flow relation with respect to the primary mass flow.Keywords: Compressible Flow, ANSYS, Fluent, Turbulence. ResumenSe presenta la optimización de un eyector de efecto Coandă para aire utilizado ampliamente en la industria mediante la dinámica de fluidos computacional CFD, esta optimización desarrollada en el software ANSYS FLUENT® V16.2. Para el procedimiento de simulación se realizaron dos modelos tridimensionales del eyector comercial ZH30-X185 de la marca SMC® en los cuales se variaron el tamaño de la separación en las paredes de la tobera que comunica la región de alta presión y la zona de mezcla de 0.3 mm y 0.8 mm. Se diseñó un experimento en el cual la presión de alimentación aplicada al eyector toma los valores de 0.20, 0.25 y 0.30 MPa y se analizó el comportamiento fluido dinámico para las dos geometrías anteriormente mencionadas. Para el análisis numérico y fluido dinámico se realizó un estudio de malla para garantizar la independencia de los resultados con el número de celdas de la discretización, se implementó el modelo de turbulencia k-e RNG con tratamiento de paredes y se resolvió de manera estacionaria el fenómeno que ocurre dentro de este, debido a que evolución temporal es muy rápida. Un aumento en las relaciones de flujo másico secundario (extraído) respecto al flujo másico primario (inyectado) fue encontrado cuando se disminuyó la separación que comunica la zona de alta presión y la zona de mezcla. Con el aumento de la presión de alimentación del flujo primario, se encontró una disminución en la relación del flujo másico secundario respecto al flujo másico primario.
A fast and simple method for the extraction and Flame Atomic Absorption Spectroscopy (FAAS) quantification of ZnO in different cosmetic matrices, including lipsticks, water-in-oil foundations, and oil-in-water creams, was developed and validated, according to the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) and the United States Pharmacopeial Convention guidelines. The sample preparation consisted of an ultrasound-assisted ethanolic extraction of ZnO followed by digestion with 1 M nitric acid (HNO3). Samples were analyzed by Flame Atomic Absorption Spectroscopy (FAAS). Specificity, linearity, the limit of detection (LOD), the limit of quantification (LOQ), sensitivity, precision, and accuracy parameters were studied. The robustness of the method was evaluated with a five-variable Youden–Steiner model. The method was specific for ZnO, and the extraction procedure did not affect the stability of the signal compared to the background. The method was linear in the range 0.2–1.0 mg/L with LOD/LOQ values equal to 0.0156 (mg·L−1)/0.0473 (mg·L−1), 0.0098 (mg·L−1)/0.0297 (mg·L−1), 0.0113 (mg·L−1)/0.0341 (mg·L−1), and 0.0131 (mg·L−1)/0.0397 (mg·L−1), respectively, for raw material, lipstick, liquid foundation, and emulsion matrices. Regarding precision, the %RSD values were below 3.0% for repeatability and intermediate precision. Global reproducibility RSD was below 8.0% for all matrices. The percentage of recovery was not statistically different from 100% in all cases. The final concentration was found to be a critical variable for all matrices except for the raw material. The variables associated with the extraction step (ethanol volume, bath temperature, and extraction time) were critical in the extraction of liquid foundations and cream emulsions. The method reduces the number and concentration of mineral acids spent on the digestion of ZnO, and its application is extendable to raw materials. This development is an adequate tool for routine analysis and cosmetic quality control of chemically different products that contain ZnO as ultraviolet radiation (UV) filter, to guarantee regulatory compliance and ensure the safety and efficacy of products delivered to consumers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.