Local stretching increases the electrophysiological heterogeneity of myocardium and accelerates and increases the complexity of VF in the stretched area, without significantly modifying the occurrences of the types of VF activation patterns in the nonstretched zone.
The activation frequency is inversely related to WL during VF, although a closer relation is observed with the functional refractory period. Despite the diverging effects of verapamil versus flecainide and sotalol on the activation frequency, WL, and size of the reentrant circuits, all 3 drugs reduce activation pattern complexity during VF.
Spiking neural networks (SNN) have gained popularity in embedded applications such as robotics and computer vision. The main advantages of SNN are the temporal plasticity, ease of use in neural interface circuits and reduced computation complexity. SNN have been successfully used for image classification. They provide a model for the mammalian visual cortex, image segmentation and pattern recognition. Different spiking neuron mathematical models exist, but their computational complexity makes them ill-suited for hardware implementation. In this paper, a novel, simplified and computationally efficient model of spike response model (SRM) neuron with spike-time dependent plasticity (STDP) learning is presented. Frequency spike coding based on receptive fields is used for data representation; images are encoded by the network and processed in a similar manner as the primary layers in visual cortex. The network output can be used as a primary feature extractor for further refined recognition or as a simple object classifier. Results show that the model can successfully learn and classify black and white images with added noise or partially obscured samples with up to ×20 computing speed-up at an equivalent classification ratio when compared to classic SRM neuron membrane models. The proposed solution combines spike encoding, network topology, neuron membrane model and STDP learning.
In recent years, a body of evidence has shown that the nucleus incertus (NI), in the dorsal tegmental pons, is a key node of the brainstem circuitry involved in hippocampal theta rhythmicity. Ascending reticular brainstem system activation evokes hippocampal theta rhythm with coupled neuronal activity in the NI. In a recent paper, we showed three populations of neurons in the NI with differential firing during hippocampal theta activation. The objective of this work was to better evaluate the causal relationship between the activity of NI neurons and the hippocampus during theta activation in order to further understand the role of the NI in the theta network. A Granger causality analysis was run to determine whether hippocampal theta activity with sensory-evoked theta depends on the neuronal activity of the NI, or vice versa. The analysis showed causal interdependence between the NI and the hippocampus during theta activity, whose directional flow depended on the different neuronal assemblies of the NI. Whereas type I and II NI neurons mainly acted as receptors of hippocampal information, type III neuronal activity was the predominant source of flow between the NI and the hippocampus in theta states. We further determined that the electrical activation of the NI was able to reset hippocampal waves with enhanced theta-band power, depending on the septal area. Collectively, these data suggest that hippocampal theta oscillations after sensory activation show dependence on NI neuron activity, which could play a key role in establishing optimal conditions for memory encoding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.