Introducción: el propósito de esta investigación fue evaluar la microdeformación ósea del bruxismo con implantes dentales por medio del método de análisis de elementos finitos (FEA). Materiales y métodos: se modeló un (1) implante Tapered Screw-Vent® (ref. TSVB10 Zimmer Dental) de 13mm de longitud x 3.7mm de diámetro con una plataforma de 3.5 mm, un pilar en Zirconio, un tornillo, agente cementante cemento de resina, una corona cerámica monolítica de un incisivo central superior, hueso cortical y hueso esponjoso, utilizando el Software CAD de Solid Works 2010 (SolidWorks Corp., Concord, MA, USA), y posteriormente se procesó y se analizó a través del Software ANSYS versión 14. Se evaluaron los esfuerzos von Mises y microdeformación ósea (µstrain), aplicando esfuerzos en sentido oblicuo con magnitudes de 200N y 800N. Este análisis permitió evaluar y comparar la (µstrain), tanto en el hueso cortical como en el hueso esponjoso en dos magnitudes 200N Y 800N. Resultados: cada uno de los elementos de la estructura modelada (corona, pilar, tornillo, implante, hueso cortical y esponjoso) sometida al incremento de esfuerzos, presentó valores von Mises y µstrain particulares con un comportamiento lineal. Al someter la estructura modelada a esfuerzos de 200N y 800N, ninguno de los componentes sufrió deformaciones permanentes, es decir, no se superó el límite de fluencia. Conclusión: de acuerdo al comportamiento mecánico de la estructura modelada en magnitudes de 800N, es posible la utilización de un implante dental en un incisivo central superior, debido a que las fuerzas parafuncionales generadas por el bruxismo no son superiores a las presentadas en la estructura modelada, en consecuencia, no generan deformaciones permanentes en el hueso.
Everyday, we interact with screens, sensors, and many other devices through contact with the skin. Experimental efforts have increased our knowledge of skin tribology but are challenged by the fact that skin has a complex structure, undergoes finite deformations, has nonlinear material response, has properties that vary with anatomical location, age, sex and environmental conditions. Computational models are powerful tools to dissect the individual contribution of these variables to the overall frictional response. Here we present a three-dimensional high-fidelity multi-layer skin computational model including a detailed surface topography or skin microrelief. Four variables are explored: local coefficient of friction (COF), indenter size, mechanical properties of the stratum corneum, and displacement direction. The results indicate that the global COF depends nonlinearly on the local COF, implying a role for skin deformation on the friction response. The global COF is also influenced by the ratio of the indenter size to the microrelief features, with larger indenters smoothing out the role of skin topography. Changes in stiffness of the uppermost layer of skin associated with humidity have a substantial effect on both the contact area and the reaction forces, but the overall changes in the COF are small. Finally, for the microrelief tested, the response can be considered isotropic. We anticipate that this model and results will enable the design of materials and devices for a desired interaction against skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.