We study the fractional Black–Scholes model (FBSM) of option pricing in the fractal transmission system. In this work, we develop a full-discrete numerical scheme to investigate the dynamic behavior of FBSM. The proposed scheme implements a known L1 formula for the α-order fractional derivative and Fourier-spectral method for the discretization of spatial direction. Energy analysis indicates that the constructed discrete method is unconditionally stable. Error estimate indicates that the 2−α-order formula in time and the spectral approximation in space is convergent with order OΔt2−α+N1−m, where m is the regularity of u and Δt and N are step size of time and degree, respectively. Several numerical results are proposed to confirm the accuracy and stability of the numerical scheme. At last, the present method is used to investigate the dynamic behavior of FBSM as well as the impact of different parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.