BackgroundDyslipidemia is an important and common cardiovascular risk factor in the general population. The lipid-lowering effects of turmeric and curcumin are unconfirmed. We performed a meta-analysis to assess the efficacy and safety of turmeric and curcumin in lowering blood lipids in patients at risk of cardiovascular disease (CVD).MethodsA comprehensive literature search was conducted on PubMed, Embase, Ovid, Medline and Cochrane Library databases to identify randomized controlled trials (published as of November 2016) that assessed the effect of turmeric and curcumin on blood lipid levels including total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG). Pooled standardized mean difference (SMD) with 95% confidence interval (CI) was used to assess the effect.ResultsThe analysis included 7 eligible studies (649 patients). Turmeric and curcumin significantly reduced serum LDL-C (SMD = −0.340, 95% confidence interval [CI]: −0.530 to −0.150, P < 0.0001) and TG (SMD = −0.214, 95% CI: −0.369 to −0.059, P = 0.007) levels as compared to those in the control group. These may be effective in lowering serum TC levels in patients with metabolic syndrome (MetS, SMD = −0.934, 95% CI: −1.289 to −0.579, P < 0.0001), and turmeric extract could possibly have a greater effect on reducing serum TC levels (SMD = −0.584, 95% CI: −0.980 to −0.188, P = 0.004); however, the efficacy is yet to be confirmed. Serum HDL-C levels were not obviously improved. Turmeric and curcumin appeared safe, and no serious adverse events were reported in any of the included studies.ConclusionsTurmeric and curcumin may protect patients at risk of CVD through improving serum lipid levels. Curcumin may be used as a well-tolerated dietary adjunct to conventional drugs. Further research is required to resolve uncertainties related to dosage form, dose and medication frequency of curcumin.Electronic supplementary materialThe online version of this article (10.1186/s12937-017-0293-y) contains supplementary material, which is available to authorized users.
Knowledge of how insects are actually affected by sex pheromones deployed throughout a crop so as to disrupt mating has lacked a mechanistic framework sufficient for guiding optimization of this environmentally friendly pest-control tactic. Major hypotheses are competitive attraction, desensitization, and camouflage. Working with codling moths, Cydia pomonella, in field cages millions of times larger than laboratory test tubes and at substrate concentrations trillions of times less than those typical for enzymes, we nevertheless demonstrate that mating disruption sufficiently parallels enzyme (ligand) -substrate interactions so as to justify adoption of conceptual and analytical tools of biochemical kinetics. By doing so, we prove that commercial dispensers of codling moth pheromone first competitively attract and then deactivate males probably for the remainder of a night. No evidence was found for camouflage. We generated and now validate simple algebraic equations for attraction and competitive attraction that will guide optimization and broaden implementation of behavioral manipulations of pests. This analysis system also offers a unique approach to quantifying animal foraging behaviors and could find applications across the natural and social sciences. Mating disruption of insects is the agricultural practice of dispensing synthetic sex attractant into a crop so as to suppress pest reproduction by interfering with mate finding (1). The Environmental Protection Agency expects this environmentally friendly pest management tactic to effectively supplement the "softer" insecticides as well as to fill critical control gaps left as "harder" insecticides face withdrawal from the marketplace due to tightening governmental regulations (2-4), e. g., azinphos methyl (Guthion) in apple production. There are now more than 100 EPA registrations of insect pheromones for use as pest control agents in agriculture and forestry. Mating disruption for all pests encompasses ≈700,000 ha (5), 160,000 of which target codling moth, Cydia pomonella, the proverbial worm in the apple.Despite 40 years of research and the emergence of a vigorous and expanding worldwide pheromone industry (5, 6), knowledge of how sex pheromones actually interact with target insects as individuals and groups under disruption has lacked a mechanistic framework sufficient for judging whether current practices for implementing mating disruption have been optimized. Here, we introduce and experimentally validate both attraction and competitive-attraction equations as well as a unique analysis system. Their utility in understanding and manipulating animal behaviors might parallel those of the Michaelis-Menten equation and classical enzyme kinetics in biochemistry.Derivation of Equations. Wind traversing a pheromone point source sweeps out an odor plume whose active space and interactions with male moths are schematically represented in Fig. 1. Cumulative catch (C) of male moths (♂) in a trap (T) (Fig. S1 presents pictures of apparatus) baited with a pheromone...
Pathogen-induced plant responses include changes in both volatile and non-volatile secondary metabolites. To characterize the role of bacterial pathogenesis in plant volatile emissions, tobacco plants, Nicotiana tabacum L. K326, were inoculated with virulent, avirulent, and mutant strains of Pseudomonas syringae. Volatile compounds released by pathogen-inoculated tobacco plants were collected, identified, and quantified. Tobacco plants infected with the avirulent strains P. syringae pv. maculicola ES4326 (Psm ES4326) or pv. tomato DC3000 (Pst DC3000), emitted quantitatively different, but qualitatively similar volatile blends of (E)-beta-ocimene, linalool, methyl salicylate (MeSA), indole, caryophyllene, beta-elemene, alpha-farnesene, and two unidentified sesquiterpenes. Plants treated with the hrcC mutant of Pst DC3000 (hrcC, deficient in the type-III secretion system) released low levels of many of the same volatile compounds as in Psm ES4326- or Pst DC3000-infected plants, with the exception of MeSA, which occurred only in trace amounts. Interaction of the virulent pathogen P. syringae pv. tabaci (Pstb), with tobacco plants resulted in a different volatile blend, consisting of MeSA and two unidentified sesquiterpenes. Overall, maximum volatile emissions occurred within 36 h post-inoculation in all the treatments except for the Pstb infection that produced peak volatile emissions about 60 h post-inoculation. (E)-beta-Ocimene was released in a diurnal pattern with the greatest emissions during the day and reduced emissions at night. Both avirulent strains, Psm ES4326 and Pst DC3000, induced accumulation of free salicylic acid (SA) within 6 h after inoculation and conjugated SA within 60 h and 36 h respectively. In contrast, SA inductions by the virulent strain Pstb occurred much later and conjugated SA increased slowly for a longer period of time, while the hrcC mutant strain did not trigger free and conjugated SA accumulations in amounts significantly different from control plants. Jasmonic acid, known to induce plant volatile emissions, was not produced in significantly higher levels in inoculated plants compared to the control plants in any treatments, indicating that induced volatile emissions from tobacco plants in response to P. syringae are not linked to changes in jasmonic acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.