Optimization of the design, operating conditions, and coupling configuration of combined cycle power plants and CO 2 capture processes by minimizing the mitigation cost,
This paper deals with the simultaneous optimization of the operating conditions and sizes of each one of the process units of a natural gas combined cycle coupled to a postcombustion CO 2 capture system. Precisely, from the mathematical models previously developed by the authors for each stand-alone process, a new optimization nonlinear programming (NLP) model is proposed in order to optimize the whole process but with the main characteristic that several feasible alternatives to integrate both processes are simultaneously embedded. Therefore, as a result of the model, the best integration schema, optimal operating conditions, and size of each process unit are obtained at the same time. No integer variables are needed to model discrete decisions in both processes. The maximization of the overall thermal efficiency is considered as an objective function. However, the proposed NLP model can be easily extended into a mixed-integer nonlinear programming (MINLP) model if it is necessary for cost minimization. The optimization results are discussed in detail, and they are compared with suboptimal configurations including reference cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.