Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.
Differential decreases over time of two bacterial species, Escherichia coli and Enterococcus faecalis, in a freshwater and a marine ecosystem were observed and explained by a differential rate of digestion of these bacteria by phagotrophic flagellates and ciliates. For this purpose, fluorescence-labeled bacteria (FLB) were used and prepared from the two species cited above. The number of FLB was observed for 5 days in fresh and marine waters in the presence or absence (0.2-,unm-pore-size-filtered water) of natural microbiota. These experiments showed a longer persistence of Enterococcusfaecalis FLB as opposed to Escherichia coli FLB in the presence of natural microbiota. Removal of FLB was due to protozoan grazing because no decrease of FLB number was observed in the absence of natural microbiota. In short-term (about 40 min) ingestion experiments, we found similar clearance rates of Escherichia coli and Enterococcus faecalis FLB by assemblages of flagelates from the freshwater and the marine ecosystem and by cultured assemblages of ciliates from the marine ecosystem. Clearance rates of Enterococcus faecalis FLB were greater than those of Escherichia coli FLB for assemblages of ciliates from the freshwater ecosystem. Comparison of rates of ingestion and digestion of FLB by protozoa showed that Escherichia coli FLB were digested and ingested at similar rates. However, Enterococcusfaecalis FLB were digested slower than they were ingested. These results suggest that a longer persistence of Enterococcus faecalis as opposed to Escherichia coli can be explained by a differential digestion by flagellates and ciliates in aquatic ecosystems. Moreover, rates of ingestion and digestion were strongly correlated for both FLB types.
The influence of biotic and abiotic factors on plasmid transfer between Escherichia coli strains in terms of the variation in the number of transconjugants formed and the variation in transfer frequency was investigated. The density of parent cells affected the number of transconjugants, reaching a maximum when the cell density was on the order of 108 CFU ml-'. As the donor-to-recipient ratios varied from 104 to 104, the number of transconjugants varied significantly (P < 0.001), reaching a maximum with donor-to-recipient ratios between 1 and 10. The concentration of total organic carbon in the mating medium affects both the number of transconjugants and the transfer frequency, being significantly higher (P < 0.001) when the total organic carbon concentration was higher than 1,139 mg of C liter-'. However, the transconjugants were detected even with less than 1 mg of C liter-. Linear regression of loglo transconjugants versus mating temperature showed a highly significant regression line (P < 0.001). Neither the transfer frequency nor the transconjugant number varied significantly in the range of pHs assayed. We can conclude that plasmid transfer by conjugation can take place within a wide range of conditions, even in such adverse conditions as the absence of nutrients and low temperatures.
Some effects of visible light on Escherichia coli and Enterococcus faecalis in natural freshwater and seawater were studied by plate counts, colony area measurements, and direct counts. A large number of somnicells (non-culturable cells) were noted in illuminated systems as compared with non-illuminated ones. Colony areas were significantly smaller in illuminated systems. Indirect activity measurements were used to test the effects of visible light on the ability of E. coli and Ent. faecalis to metabolize substrates ([14C]glucose) in natural waters. In illuminated systems, a decrease of glucose uptake was observed. When percentages of assimilation and respiration with respect to the total glucose uptake were analysed a decrease of assimilation percentages and an increase of respiration percentages were observed. In addition, differences in glucose uptake, assimilation and respiration by enteric bacteria were detected for E. coli at the beginning of the experiments between fresh- and seawater and these were interpreted as a toxic effect exerted by seawater on E. coli cells. Differences between species, natural waters and parameters studied (excepting glucose assimilation) were detected in the illuminated systems. We concluded, however, that enteric bacteria under visible light illumination show a general survival strategy characterized by reaching progressively a somnicell stage which can be defined in terms of their (1) inability to form colonies on standard bacteriological media, (2) inability to incorporate substrates, and (3) inactivation of biosynthetic processes.
The temporal variability of the abundance and the incorporation of (3)H-thymidine and (14)C-glucose by attached and free-living bacteria, as well as their relation with environmental factors, were analyzed in a coastal marine ecosystem during a year. Both communities were quantitatively very different. Attached bacteria represented only 6.8% of the total bacterial abundance, whereas free-living bacteria represented 93.2%. The environmental factors most closely linked to the abundance and activity of free-living bacteria were temperature and the concentration of dissolved nutrients. Moreover, the free-living community showed similar temporal variations in abundance and in activity, with lower values in the cold months (from October to May). The attached community did not present the same pattern of variation as the free-living one. The abundance of the attached bacteria was mainly correlated to the concentration of particulate material, whereas their activity was correlated to temperature. We did not find a significant correlation between the abundance and the activity of the attached community. On the other hand, the activity per cell of the two communities did not present a clear temporal variation. Attached bacteria were more active than free-living ones in the incorporation of radiolabeled substrates on a per cell basis (five times more in the case of glucose incorporation and twice as active in thymidine incorporation). However, both communities showed similar specific growth rates. The results suggest that the two aquatic bacterial communities must not be considered as being independent of each other. There appears to be a dynamic equilibrium between the two communities, regulated by the concentrations of particulate matter and nutrients and by other environmental factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.