Convective mixing in porous media is triggered by a Rayleigh-Bénard-type hydrodynamic instability as a result of an unstable density stratification of fluids. While convective mixing has been studied extensively, the fundamental behavior of the dissolution flux and its dependence on the system parameters are not yet well understood. Here, we show that the dissolution flux and the rate of fluid mixing are determined by the mean scalar dissipation rate. We use this theoretical result to provide computational evidence that the classical model of convective mixing in porous media exhibits, in the regime of high Rayleigh number, a dissolution flux that is constant and independent of the Rayleigh number. Our findings support the universal character of convective mixing and point to the need for alternative explanations for nonlinear scalings of the dissolution flux with the Rayleigh number, recently observed experimentally.
Dissolution of carbon dioxide (CO2) injected into saline aquifers causes an unstable high-density diffusive front. Understanding how instability fingers develop has received much attention because they accelerate dissolution trapping, which favours long-term sequestration. The time for the onset of convection as the dominant transport mechanism has been traditionally studied by neglecting dispersion and treating the CO2–brine interface as a prescribed concentration boundary by analogy to a thermal convection problem. This work explores the effect of these simplifications. Results show that accounting for the CO2 mass flux across the prescribed concentration boundary has little effect on the onset of convection. However, accounting for dispersion causes a reduction of up to two orders of magnitude on the onset time. This implies that CO2 dissolution can be accelerated by activating dispersion as a transport mechanism, which can be achieved adopting a fluctuating injection regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.