Doñana National Park (DNP) in southern Spain is a UNESCO Biosphere Reserve where commercial hunting and wildlife artificial feeding do not take place and traditional cattle husbandry still exists. Herein, we hypothesized that Mycobacterium bovis infection prevalence in wild ungulates will depend on host ecology and that variation in prevalence will reflect variation in the interaction between hosts and environmental risk factors. Cattle bTB reactor rates increased in DNP despite compulsory testing and culling of infected animals. In this study, 124 European wild boar, 95 red deer, and 97 fallow deer were sampled from April 2006 to April 2007 and analyzed for M. bovis infection. Modelling and GIS were used to identify risk factors and intra and inter-species relationships. Infection with M. bovis was confirmed in 65 (52.4%) wild boar, 26 (27.4%) red deer and 18 (18.5%) fallow deer. In the absence of cattle, wild boar M. bovis prevalence reached 92.3% in the northern third of DNP. Wild boar showed more than twice prevalence than that in deer (p<0.001). Modelling revealed that M. bovis prevalence decreased from North to South in wild boar (p<0.001) and red deer (p<0.01), whereas no spatial pattern was evidenced for fallow deer. Infection risk in wild boar was dependent on wild boar M. bovis prevalence in the buffer area containing interacting individuals (p<0.01). The prevalence recorded in this study is among the highest reported in wildlife. Remarkably, this high prevalence occurs in the absence of wildlife artificial feeding, suggesting that a feeding ban alone would have a limited effect on wildlife M. bovis prevalence. In DNP, M. bovis transmission may occur predominantly at the intra-species level due to ecological, behavioural and epidemiological factors. The results of this study allow inferring conclusions on epidemiological bTB risk factors in Mediterranean habitats that are not managed for hunting purposes. Our results support the need to consider wildlife species for the control of bTB in cattle and strongly suggest that bTB may affect animal welfare and conservation.
Over the last years there has been a massive increase in rhinoceros poaching incidents, with more than two individuals killed per day in South Africa in the first months of 2013. Immediate actions are needed to preserve current populations and the agents involved in their protection are demanding new technologies to increase their efficiency in the field. We assessed the use of remotely piloted aircraft systems (RPAS) to monitor for poaching activities. We performed 20 flights with 3 types of cameras: visual photo, HD video and thermal video, to test the ability of the systems to detect (a) rhinoceros, (b) people acting as poachers and (c) to do fence surveillance. The study area consisted of several large game farms in KwaZulu-Natal province, South Africa. The targets were better detected at the lowest altitudes, but to operate the plane safely and in a discreet way, altitudes between 100 and 180 m were the most convenient. Open areas facilitated target detection, while forest habitats complicated it. Detectability using visual cameras was higher at morning and midday, but the thermal camera provided the best images in the morning and at night. Considering not only the technical capabilities of the systems but also the poacherś modus operandi and the current control methods, we propose RPAS usage as a tool for surveillance of sensitive areas, for supporting field anti-poaching operations, as a deterrent tool for poachers and as a complementary method for rhinoceros ecology research. Here, we demonstrate that low cost RPAS can be useful for rhinoceros stakeholders for field control procedures. There are, however, important practical limitations that should be considered for their successful and realistic integration in the anti-poaching battle.
Non-invasive sampling is a useful tool for genetic analyses of endangered and/or elusive species, but it is often inapplicable due to the low quality and quantity of the DNA obtained. In this study we show that the blood clot located in the superior umbilicus of the feather shaft is a better source of DNA than the previously used tip samples from moulted feathers. We found that feather clots from museum specimens provided results nearly as good as footpad and better than those from the more commonly used museum skin snips. Feather clots proved to be a good source of DNA for genetic analysis that will significantly facilitate genetic monitoring of wild bird populations.
During the last decade, the major histocompatibility complex (MHC) has received much attention in the fields of evolutionary and conservation biology because of its potential implications in many biological processes. New insights into the gene structure and evolution of MHC genes can be gained through study of additional lineages of birds not yet investigated at the genomic level. In this study, we characterized MHC class II B genes in five families of birds of prey (Accipitridae, Pandionidae, Strigidae, Tytonidae, and Falconidae). Using PCR approaches, we isolated genomic MHC sequences up to 1300 bp spanning exons 1 to 3 in 26 representatives of each raptor lineage, finding no stop codons or frameshift mutations in any coding region. A survey of diversity across the entirety of exon 2 in the lesser kestrel Falco naumanni reported 26 alleles in 21 individuals. Bayesian analysis revealed 21 positively selected amino acid sites, which suggests that the MHC genes described here are functional and probably expressed. Finally, through interlocus comparisons and phylogenetic analysis, we also discuss genetic evidence for concerted and transspecies evolution in the raptor MHC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.