M1 macrophage accumulation and excessive inflammation are commonly encountered issues in diabetic wounds and can fail in the healing process. Hence, hydrogel dressings with immunoregulatory capacity have great promise in the clinical practice of diabetic wound healing. However, current immunoregulatory hydrogels are always needed for complex interventions and high‐cost treatments, such as cytokines and cell therapies. In this study, a novel glycyrrhizic acid (GA)‐based hybrid hydrogel dressing with intrinsic immunoregulatory properties is developed to promote rapid diabetic wound healing. This hybrid hydrogel consists of interpenetrating polymer networks composed of inorganic Zn2+‐induced self‐assembled GA and photo‐crosslinked methyl acrylated silk fibroin (SF), realizing both excellent injectability and mechanical strength. Notably, the SF/GA/Zn hybrid hydrogel can regulate macrophage responses in the inflammatory microenvironment, circumventing the use of any additives. The immunomodulatory properties of the hydrogel can be harnessed for safe and efficient therapeutics that accelerate the three phases of wound repair and serve as a promising dressing for the management of diabetic wounds.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Drug delivery for tumor theranostics involves the extensive use of the enhanced permeability and retention (EPR) effect. Previously, various types of nanomedicines have been demonstrated to accumulate in solid tumors via the EPR effect. However, EPR is a highly variable phenomenon because of tumor heterogeneity, resulting in low drug delivery efficacy in clinical trials. Because ultrasonication using micro/nanobubbles as contrast agents can disrupt blood vessels and enhance the specific delivery of drugs, it is an effective approach to improve the EPR effect for the passive targeting of tumors. In this review, the basic thermal effect, acoustic streaming, and cavitation mechanisms of ultrasound, which are characteristics that can be utilized to enhance the EPR effect, are briefly introduced. Second, micro/nanobubble-enhanced ultrasound imaging is discussed to understand the validity and variability of the EPR effect. Third, because the tumor microenvironment is complicated owing to elevated interstitial fluid pressure and the deregulated extracellular matrix components, which may be unfavorable for the EPR effect, few new trends in smart bubble drug delivery systems, which may improve the accuracy of EPR-mediated passive drug targeting, are summarized. Finally, the challenging and major concerns that should be considered in the next generation of micro/nanobubble-contrast-enhanced ultrasound theranostics for EPR-mediated passive drug targeting are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.