Since the introduction of PCV7 for children, there has been an emergence of IPD caused by virulent clones of non-PCV7 serotypes that has been associated with significant clinical changes and a decrease in antibiotic resistance.
Pediatric parapneumonic empyema (PPE) has been increasing in several countries including Spain. Streptococcus pneumoniae is a major PPE pathogen; however, antimicrobial pretreatment before pleural fl uid (PF) sampling frequently results in negative diagnostic cultures, thus greatly underestimating the contribution of pneumococci, especially pneumococci susceptible to antimicrobial agents, to PPE. The study aim was to identify the serotypes and genotypes that cause PPE by using molecular diagnostics and relate these data to disease incidence and severity. A total of 208 children with PPE were prospectively enrolled; blood and PF samples were collected. Pneumococci were detected in 79% of culture-positive and 84% of culture-negative samples. All pneumococci were genotyped by multilocus sequence typing. Serotypes were determined for 111 PPE cases; 48% were serotype 1, of 3 major genotypes previously circulating in Spain. Variance in patient complication rates was statistically signifi cant by serotype. The recent PPE increase is principally due to nonvaccine serotypes, especially the highly invasive serotype 1. P leural effusions occur in at least 40% of children hospitalized with bacterial pneumonia. Occasionally, the infectious agent invades the pleura to cause pediatric paraneumonic empyema (PPE) (1), characterized by the presence of pus. Although rarely associated with fatalities in industrialized countries, PPE often results in prolonged hospitalization and surgical intervention, and patients are at risk for serious and long-lasting illness (2,3).An increasing incidence of PPE has been reported in several countries since the mid-1990s (2-6), but it is not clear why. Streptococcus pneumoniae is the most frequently found microorganism in most recent reports. However, conventional microbiologic culture methods have low sensitivity, usually because of antimicrobial pretreatment before sterile-site sampling. Consequently, the contribution of antimicrobial drug-susceptible serotypes might be higher than reported estimates. Molecular and antigen detection-based techniques, including direct molecular typing of culture-negative pleural fl uid (PF) samples (7), can be useful adjuncts in defi ning the contributory role of different microorganisms and pneumococcal serotypes to PPE etiology (4,8).Our study's goal was to prospectively investigate the molecular epidemiology of pneumococcal PPE among children admitted to 3 of the largest tertiary-care pediatric hospitals in Spain. There were 4 objectives: 1) identify the serotypes and multilocus sequence typing (MLST) genotypes causing PPE and determine whether a temporal change in the circulating genotypes could explain the recent increase; 2) determine whether the causal genotypes were only associated with PPE or also caused other invasive pneumococcal disease (IPD) in the same population, or were carried by healthy children; 3) compare serotypes and genotypes recovered from northern and southern Spain in the context of regional differences in 7-valent pneumococcal conjugat...
Classical clinical risk factors have more weight in predicting a severe BCS in infants with acute bronchiolitis than the involved viruses.
BackgroundThe 13-valent pneumococcal conjugate vaccine (PCV13) was licensed based on the results of immunogenicity studies and correlates of protection derived from randomized clinical trials of the 7-valent conjugate pneumococcal vaccine. We assessed the vaccination effectiveness (VE) of the PCV13 in preventing invasive pneumococcal disease (IPD) in children aged 7–59 months in a population with suboptimal vaccination coverage of 55%.MethodsThe study was carried out in children with IPD admitted to three hospitals in Barcelona (Spain) and controls matched by hospital, age, sex, date of hospitalization and underlying disease. Information on the vaccination status was obtained from written medical records. Conditional logistic regression was made to estimate the adjusted VE and 95% confidence intervals (CI).Results169 cases and 645 controls were included. The overall VE of ≥1 doses of PCV13 in preventing IPD due to vaccine serotypes was 75.8% (95% CI, 54.1–87.2) and 90% (95% CI, 63.9–97.2) when ≥2 doses before 12 months, two doses on or after 12 months or one dose on or after 24 months, were administered. The VE of ≥1 doses was 89% (95% CI, 42.7–97.9) against serotype 1 and 86.0% (95% CI, 51.2–99.7) against serotype 19A. Serotype 3 showed a non-statistically significant effectiveness (25.9%; 95% CI, -65.3 to 66.8).ConclusionsThe effectiveness of ≥1 doses of PCV13 in preventing IPD caused by all PCV13 serotypes in children aged 7–59 months was good and, except for serotype 3, the effectiveness of ≥1 doses against the most frequent PCV13 serotypes causing IPD was high when considered individually.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.