RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in higher plants and insects. To counteract RNA silencing, viruses express silencing suppressors that interfere with both siRNA-and microRNA-guided silencing pathways. We used comparative in vitro and in vivo approaches to analyse the molecular mechanism of suppression by three well-studied silencing suppressors. We found that silencing suppressors p19, p21 and HC-Pro each inhibit the intermediate step of RNA silencing via binding to siRNAs, although the molecular features required for duplex siRNA binding differ among the three proteins. None of the suppressors affected the activity of preassembled RISC complexes. In contrast, each suppressor uniformly inhibited the siRNA-initiated RISC assembly pathway by preventing RNA silencing initiator complex formation.
RNA silencing is an evolutionarily conserved sequence-specific gene-inactivation system that also functions as an antiviral mechanism in higher plants and insects. To overcome antiviral RNA silencing, viruses express silencing-suppressor proteins. These viral proteins can target one or more key points in the silencing machinery. Here we show that in Sweet potato mild mottle virus (SPMMV, type member of the Ipomovirus genus, family Potyviridae), the role of silencing suppressor is played by the P1 protein (the largest serine protease among all known potyvirids) despite the presence in its genome of an HC-Pro protein, which, in potyviruses, acts as the suppressor. Using in vivo studies we have demonstrated that SPMMV P1 inhibits si/miRNA-programmed RISC activity. Inhibition of RISC activity occurs by binding P1 to mature high molecular weight RISC, as we have shown by immunoprecipitation. Our results revealed that P1 targets Argonaute1 (AGO1), the catalytic unit of RISC, and that suppressor/binding activities are localized at the N-terminal half of P1. In this region three WG/GW motifs were found resembling the AGO-binding linear peptide motif conserved in metazoans and plants. Site-directed mutagenesis proved that these three motifs are absolutely required for both binding and suppression of AGO1 function. In contrast to other viral silencing suppressors analyzed so far P1 inhibits both existing and de novo formed AGO1 containing RISC complexes. Thus P1 represents a novel RNA silencing suppressor mechanism. The discovery of the molecular bases of P1 mediated silencing suppression may help to get better insight into the function and assembly of the poorly explored multiprotein containing RISC.
The Potyviridae is the largest family of RNA plant viruses, members of which have single-stranded, positive-sense RNA genomes and flexuous filamentous particles 680–900 nm long and 11–20 nm wide. There are eight genera, distinguished by the host range, genomic features and phylogeny of the member viruses. Genomes range from 8.2 to 11.3 kb, with an average size of 9.7 kb. Most genomes are monopartite but those of members of the genus Bymovirus are bipartite. Some members cause serious disease epidemics in cultivated plants. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Potyviridae, which is available at www.ictv.global/report/potyviridae.
Genome structure and sequence are notably conserved between members of the family Potyviridae. However, some genomic regions of these viruses, such as that encoding the P1 protein, show strikingly high variability. In this study, some partially conserved motifs were identified upstream of the quite well-conserved protease domain located near the P1 C terminus. The irregular distribution of these motifs suggests that the potyviral P1 proteins have undergone complex evolutionary diversification. Evidence was found of recombination events in the P1 N-terminal region, similar to those reported in potyviruses of the bean common mosaic virus subgroup, but also affecting other potyviruses. Moreover, intergeneric recombination events affecting potyviruses and ipomoviruses were also observed. Evidence that these recombination events could be linked to host adaptation is provided. Specific sequence features and differences in net charge help to classify the P1 proteins of members of the family Potyviridae into two groups: those from potyviruses and rymoviruses and those from tritimoviruses. The ipomovirus Cucumber vein yellowing virus has two P1 copies arranged in tandem, the most N-terminal one being of the potyvirus type and the other being of the tritimovirus type. These findings suggest that both recombination and gene duplication have contributed to P1 evolution and helped to facilitate successful adaptation of members of the family Potyviridae to a wide range of host species.
Most plant viruses rely on vector organisms for their plant-to-plant spread. Although there are many different natural vectors, few plant virus-vector systems have been well studied. This review describes our current understanding of virus transmission by aphids, thrips, whiteflies, leafhoppers, planthoppers, treehoppers, mites, nematodes, and zoosporic endoparasites. Strategies for control of vectors by host resistance, chemicals, and integrated pest management are reviewed. Many gaps in the knowledge of the transmission mechanisms and a lack of available host resistance to vectors are evident. Advances in genome sequencing and molecular technologies will help to address these problems and will allow innovative control methods through interference with vector transmission. Improved knowledge of factors affecting pest and disease spread in different ecosystems for predictive modeling is also needed. Innovative control measures are urgently required because of the increased risks from vector-borne infections that arise from environmental change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.