Field pea cultivars are constantly improved through breeding programs to enhance biotic and abiotic stress tolerance and increase seed yield potential. In pea breeding, the Above Ground Biomass (AGBM) is assessed due to its influence on seed yield, canopy closure, and weed suppression. It is also the primary yield component for peas used as a cover crop and/or grazing. Measuring AGBM is destructive and labor-intensive process. Sensor-based phenotyping of such traits can greatly enhance crop breeding efficiency. In this research, high resolution RGB and multispectral images acquired with unmanned aerial systems were used to assess phenotypes in spring and winter pea breeding plots. The Green Red Vegetation Index (GRVI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Red Edge Index (NDRE), plot volume, canopy height, and canopy coverage were extracted from RGB and multispectral information at five imaging times (between 365 to 1948 accumulated degree days/ADD after 1 May) in four winter field pea experiments and at three imaging times (between 1231 to 1648 ADD) in one spring field pea experiment. The image features were compared to ground-truth data including AGBM, lodging, leaf type, days to 50% flowering, days to physiological maturity, number of the first reproductive node, and seed yield. In two of the winter pea experiments, a strong correlation between image features and seed yield was observed at 1268 ADD (flowering). An increase in correlation between image features with the phenological traits such as days to 50% flowering and days to physiological maturity was observed at about 1725 ADD in these winter pea experiments. In the spring pea experiment, the plot volume estimated from images was highly correlated with ground truth canopy height (r = 0.83) at 1231 ADD. In two other winter pea experiments and the spring pea experiment, the GRVI and NDVI features were significantly correlated with AGBM at flowering. When selected image features were used to develop a least absolute shrinkage and selection operator model for AGBM estimation, the correlation coefficient between the actual and predicted AGBM was 0.60 and 0.84 in the winter and spring pea experiments, respectively. A SPOT-6 satellite image (1.5 m resolution) was also evaluated for its applicability to assess biomass and seed yield. The image features extracted from satellite imagery showed significant correlation with seed yield in two winter field pea experiments, however, the trend was not consistent. In summary, the study supports the potential of using unmanned aerial system-based imaging techniques to estimate biomass and crop performance in pea breeding programs.
Washington State produces about 70% of total fresh market apples in the United States. One of the primary goals of apple breeding programs is the development of new cultivars resistant to devastating diseases such as fire blight. The overall objective of this study was to investigate high-throughput phenotyping techniques to evaluate fire blight disease symptoms in apple trees. In this regard, normalized stomatal conductance data acquired using a portable photosynthetic system, image data collected using RGB and multispectral cameras, and visible-near infrared spectral reflectance acquired using a hyperspectral sensing system, were independently evaluated to estimate the progression of fire blight infection in young apple trees. Sensors with ranging complexity – from simple RGB to multispectral imaging to hyperspectral system – were evaluated to select the most accurate technique for the assessment of fire blight disease symptoms. The proximal multispectral images and visible-near infrared spectral reflectance data were collected in two field seasons (2016, 2017); while, proximal side-view RGB images and multispectral images using unmanned aerial systems were collected in 2017. The normalized stomatal conductance data was correlated with disease severity rating ( r = 0.51, P < 0.05). The features extracted from RGB images (e.g., maximum length of senesced leaves, area of senesced leaves, ratio between senesced and healthy leaf area) and multispectral images (e.g., vegetation indices) also demonstrated potential in evaluation of disease rating (| r | > 0.35, P < 0.05). The average classification accuracy achieved using visible-near infrared spectral reflectance data during the classification of susceptible from symptomless groups ranged between 71 and 93% using partial least square regression and quadratic support vector machine. In addition, fire blight disease ratings were compared with normalized difference spectral indices (NDSIs) that were generated from visible-near infrared reflectance spectra. The selected spectral bands in the range 710–2,340 nm used for computing NDSIs showed consistently higher correlation with disease severity rating than data acquired from RGB and multispectral imaging sensors across multiple seasons. In summary, these specific spectral bands can be used for evaluating fire blight disease severity in apple breeding programs and potentially as early fire blight disease detection tool to assist in production systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.