Cork taint is a musty or moldy off-odor in wine mainly caused by 2,4,6-trichloroanisole (2,4,6-TCA). We examined the role of 14 fungal strains isolated from cork samples in the production of 2,4,6-TCA by O methylation of 2,4,6-trichlorophenol (2,4,6-TCP). The fungal strains isolated belong to the genera Penicillium (four isolates); Trichoderma (two isolates); and Acremonium, Chrysonilia, Cladosporium, Fusarium, Mortierella, Mucor, Paecilomyces, and Verticillium (one isolate each). Eleven of these strains could produce 2,4,6-TCA when they were grown directly on cork in the presence of 2,4,6-TCP. The highest levels of bioconversion were carried out by the Trichoderma and Fusarium strains. One strain of Trichoderma longibrachiatum could also efficiently produce 2,4,6-TCA in liquid medium. However, no detectable levels of 2,4,6-TCA production by this strain could be detected on cork when putative precursors other than 2,4,6-TCP, including several anisoles, dichlorophenols, trichlorophenols, or other highly chlorinated compounds, were tested. Time course expression studies with liquid cultures showed that the formation of 2,4,6-TCA was not affected by a high concentration of glucose (2% or 111 mM) or by ammonium salts at concentrations up to 60 mM. In T. longibrachiatum the O methylation of 2,4,6-TCP was catalyzed by a mycelium-associated S-adenosyl-L-methionine (SAM)-dependent methyltransferase that was strongly induced by 2,4,6-TCP. The reaction was inhibited by S-adenosyl-Lhomocysteine, an inhibitor of SAM-dependent methylation, suggesting that SAM is the natural methyl donor. These findings increase our understanding of the mechanism underlying the origin of 2,4,6-TCA on cork, which is poorly understood despite its great economic importance for the wine industry, and they could also help us improve our knowledge about the biodegradation and detoxification processes associated with chlorinated phenols.
Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata, whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora, and P. minimum, all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries. IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and/or the root system. Although different strategies have recently been developed to protect pruning wounds using antifungal compounds (natural or synthetic) or biocontrol agents, no tools are yet available for controlling soil pathogens that infect plants through their root system. This study shows that different actinobacterial isolates, when applied to grafts in a nursery, can significantly reduce the infection rate caused by fungal pathogens that enter through the root system. This is a new, promising, and green alternative for preventing the decline of young grapevines in nurseries and vineyards.
Three genes encoding a typical beta‐lactamase, a penicillin‐binding protein (PBP4) and a transmembrane protein are located in the cluster of cephamycin biosynthetic genes in Nocardia lactamdurans. The similarity of the N. lactamdurans beta‐lactamase to class A beta‐lactamases from clinical isolates supports the hypothesis that antibiotic resistance genes in pathogenic bacteria are derived from antibiotic‐producing organisms. The beta‐lactamase is secreted and is active against penicillins (including the biosynthetic intermediates penicillin N and isopenicillin N), but not against cephamycin C. The beta‐lactamase is synthesized during the active growth phase, prior to the formation of three cephamycin biosynthetic enzymes. The PBP of N. lactamdurans is a low‐M(r) protein that is very similar to DD‐carboxypeptidases of Streptomyces and Actinomadura. The pbp gene product expressed in Streptomyces lividans accumulates in the membrane fraction. By disruption of N. lactamdurans protoplasts, the PBP4 was shown to be located in the plasma membrane. Eight PBPs were found in the membranes of N. lactamdurans, none of which bind cephamycin C, which explains the resistance of this strain to its own antibiotic. A transmembrane protein encoded by the cmcT gene of the cluster also accumulates in the membrane fraction and is probably related to the control of synthesis and secretion of the antibiotic. A balanced synthesis of beta‐lactam antibiotics, beta‐lactamase and PBP is postulated to be critical for the survival of beta‐lactam‐producing actinomycetes.
A 34 kb fragment of the Nocardia lactamdurans DNA carrying the cluster of early cephamycin biosynthetic genes was cloned in lambda EMBL3 by hybridization with probes internal to the pcbAB and pcbC genes of Penicillium chrysogenum and Streptomyces griseus. The pcbAB and pcbC genes were found to be closely linked together in the genome of N. lactamdurans. The pcbAB gene of N. lactamdurans showed the same orientation as the pcbC gene, in contrast to the divergent expression of the genes in the pcbAB-pcbC cluster of P. chrysogenum and Acremonium chrysogenum. The pcbAB gene encodes a large (3649 amino acids) multidomain delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase with a deduced Mr of 404,134. This enzyme contains three repeated domains and a consensus thioesterase active-site sequence. The pcbC gene encodes a protein of 328 amino acids with a deduced Mr of 37,469, which is similar to other isopenicillin N synthases except that it lacks one of two cysteine residues conserved in all other isopenicillin N synthases. The different organization of the pcbAB-pcbC gene cluster in N. lactamadurans and Streptomyces clavuligerus relative to P. chrysogenum and A. chrysogenum is intriguing in relation to the hypothesis of horizontal transference of these genes from actinomycetes to filamentous fungi by a single transfer event.
BackgroundThe phytopathogenic fungus Diplodia seriata, whose genome remains unsequenced, produces severe infections in fruit trees (fruit blight) and grapevines. In this crop is recognized as one of the most prominent pathogens involved in grapevine trunk disease (or grapevine decline). This pathology can result in the death of adult plants and therefore it produces severe economical losses all around the world. To date no genes or proteins have been characterized in D. seriata that are involved in the pathogenicity process. In an effort to help identify potential gene products associated with pathogenicity and to gain a better understanding of the biology of D. seriata, we initiated a proteome-level study of the fungal mycelia and secretome.ResultsIntracellular and secreted proteins from D. seriata collected from liquid cultures were separated using two-dimensional gel electrophoresis. About 550 cytoplasmic proteins were reproducibly present in 3 independent extractions, being 53 identified by peptide mass fingerprinting and tandem mass spectrometry. The secretome analysis showed 75 secreted proteins reproducibly present in 3 biological replicates, being 16 identified. Several of the proteins had been previously identified as virulence factors in other fungal strains, although their contribution to pathogenicity in D. seriata remained to be analyzed. When D. seriata was grown in a medium supplemented with carboxymethylcellulose, 3 proteins were up-regulated and 30 down-regulated. Within the up-regulated proteins, two were identified as alcohol dehydrogenase and mitochondrial peroxyrredoxin-1, suggesting that they could play a significant role in the pathogenicity process. As for the 30 down-regulated proteins, 9 were identified being several of them involved in carbohydrate metabolism.ConclusionsThis study is the first report on proteomics on D. seriata. The proteomic data obtained will be important to understand the pathogenicity process. In fact, several of the identified proteins have been reported as pathogenicity factors in other phytopathogenic fungi. Moreover, this proteomic analysis supposes a useful basis for deepening into D. seriata knowledge and will contribute to the development of the molecular biology of this fungal strain as it has been demonstrated by cloning the gene Prx1 encoding mitochondrial peroxiredoxin-1 of D. seriata (the first gene to be cloned in this microorganism; data not shown).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.