The association of cerebral white matter lesions (WMLs) with cognitive status is not well understood in middle-aged individuals. Our aim was to determine the specific contribution of periventricular hyperintensities (PVHs) and deep white matter hyperintensities (DWMHs) to cognitive function in a community sample of asymptomatic participants aged 50 to 65 years. One hundred stroke- and dementia-free adults completed a comprehensive neuropsychological battery and brain MRI protocol. Participants were classified according to PVH and DWMH scores (Fazekas scale). We dichotomized our sample into low grade WMLs (participants without or with mild lesions) and high grade WMLs (participants with moderate or severe lesions). Analyses were performed separately in PVH and DWMH groups. High grade DWMHs were associated with significantly lower scores in executive functioning (-0.45 standard deviations [SD]), attention (-0.42 SD), verbal fluency (-0.68 SD), visual memory (-0.52 SD), visuospatial skills (-0.79 SD), and psychomotor speed (-0.46 SD). Further analyses revealed that high grade DWMHs were also associated with a three- to fourfold increased risk of impaired scores (i.e.,<1.5 SD) in executive functioning, verbal fluency, visuospatial skills, and psychomotor speed. Our findings suggest that only DWMHs, not PVHs, are related to diminished cognitive function in middle-aged individuals. (JINS, 2012, 18, 1-12).
Methods: One hundred and forty healthy physically inactive older adults will be randomly assigned to computerized cognitive training (CCT), aerobic exercise (AE), combined training (COMB), or a control group. The intervention consists of a 3 month home-based program 5 days per week in sessions of 45 min. Data from cognitive, physical, and psychological tests, cardiovascular risk factors, structural and functional brain scans, and blood samples will be obtained before and after the intervention.
Background: Lifestyle interventions are promising strategies to promote cognitive health in aging. Projecte Moviment examines if aerobic exercise (AE), computerized cognitive training (CCT), and their combination (COMB) improves cognition, psychological health, and physical status compared to a control group. We assessed the moderating role of age and sex and the mediating effects of cardiorespiratory fitness (CRF), physical activity (PA), and psychological health on intervention-related cognitive benefits.Methods: This was a 12-week multi-domain, single-blind, proof-of-concept randomized controlled trial (RCT). 96 healthy adults aged 50-70 years were assigned to AE, CCT, COMB, and a wait-list control group. The per protocol sample, which completed the intervention with a level of adherence > 80%, consisted of 82 participants (62% female; age = 58.38 ± 5.47). We assessed cognition, psychological health, CRF, and energy expenditure in PA at baseline and after the intervention. We regressed change in each outcome on the treatment variables, baseline score, sex, age, and education. We used PROCESS Macro to perform the mediation and moderation analyses.Results: AE benefited Working Memory (SMD = 0.29, p = 0.037) and Attention (SMD = 0.33, p = 0.028) including the Attention-Speed (SMD = 0.31, p = 0.042) domain, compared to Control. COMB improved Attention (SMD = 0.30, p = 0.043), Speed
Background: Risk factors for vascular cognitive impairment (VCI) are the same as traditional risk factors for cerebrovascular disease (CVD). Early identification of subjects at higher risk of VCI is important for the development of effective preventive strategies. In addition to traditional vascular risk factors (VRF), circulating biomarkers have emerged as potential tools for early diagnoses, as they could provide in vivo measures of the underlying pathophysiology. While VRF have been consistently linked to a VCI profile (i.e., deficits in executive functions and processing speed), the cognitive correlates of CVD biomarkers remain unclear. In this population-based study, the aim was to study and compare cognitive patterns in relation to VRF and circulating biomarkers of CVD. Methods: TheBarcelona-AsIA Neuropsychology Study included 747 subjects older than 50, without a prior history of stroke or coronary disease and with a moderate to high vascular risk (mean age, 66 years; 34.1% women). Three cognitive domains were derived from factoral analysis: visuospatial skills/speed, verbal memory and verbal fluency. Multiple linear regression was used to assess relationships between cognitive performance (multiple domains) and a panel of circulating biomarkers, including indicators of inflammation, C-reactive protein (CRP) and resistin, endothelial dysfunction, asymmetric dimethylarginine (ADMA), thrombosis, plasminogen activator inhibitor 1 (PAI-1), as well as traditional VRF, metabolic syndrome and insulin resistance (homeostatic model assessment for insulin resistance index). Analyses were adjusted for age, gender, years of education and depressive symptoms. Results: Traditional VRF were related to lower performance in verbal fluency, insulin resistance accounted for lower performance in visuospatial skills/speed and the metabolic syndrome predicted lower performance in both cognitive domains. From the biomarkers of CVD, CRP was negatively related to verbal fluency performance and increasing ADMA levels were associated with lower performance in verbal memory. Resistin and PAI-1 did not relate to cognitive function performance. Conclusion: Vascular risk factors, and markers of inflammation and endothelial dysfunction predicted lower performance in several cognitive domains. Specifically, cognitive functions associated with CRP are typically affected in VCI and overlap those related to VRF. ADMA indicated a dissociation in the cognitive profile involving verbal memory. These findings suggest that inflammation and endothelial dysfunction might play a role in the predementia cognitive impairment stages.
Our findings support the hypothesis that ischemic stroke lesions are associated with remote thalamic diffusion abnormalities, and that these abnormalities can contribute to cognitive dysfunction 3 months after a cerebrovascular event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.