Global climate shifts and ecological flexibility are two major factors that may affect rates of speciation and extinction across clades. Here, we connect past climate to changes in diet and diversification dynamics of ruminant mammals. Using novel versions of Multi-State Speciation and Extinction models, we explore the most likely scenarios for evolutionary transitions among diets in this clade and ask whether ruminant lineages with different feeding styles (browsing, grazing and mixed feeding) underwent differential rates of diversification concomitant with global temperature change. The best model of trait change had transitions from browsers to grazers via mixed feeding, with appreciable rates of transition to and from grazing and mixed feeding. Diversification rates in mixed-feeder and grazer lineages tracked the palaeotemperature curve, exhibiting higher rates during the Miocene thermal maxima. The origination of facultative mixed diet and grazing states may have triggered two adaptive radiations-one during the Oligocene-Miocene transition and the other during Middle-to-Late Miocene. Our estimate of mixed diets for basal lineages of both bovids and cervids is congruent with fossil evidence, while the reconstruction of browser ancestors for some impoverished cladesGiraffidae and Tragulidae-is not. Our results offer model-based neontological support to previous palaeontological findings and fossil-based hypothesis highlighting the importance of dietary innovations-especially mixed feeding-in the success of ruminants during the Neogene.
Evolutionary theory has long proposed a connection between trait evolution and diversification rates. In this work, we used phylogenetic methods to evaluate the relationship of lineage-specific speciation rates and the mode of evolution of body size and tooth morphology in the Neogene and Quaternary radiation of horses (7 living and 131 extinct species). We show that diversification pulses are a recurrent feature of equid evolution but that these pulses are not correlated with rapid bursts in phenotypic evolution. Instead, rapid cladogenesis seems repeatedly associated with extrinsic factors that relaxed diversity bounds, such as increasing productivity and geographic dispersals into the Old World. This evidence suggests that diversity dynamics in Equinae were controlled mainly by ecological limits under diversity dependence rather than rapid ecomorphological differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.