We have recently introduced a neural network mobile robot controller (NETMORC). This controller, based on previously developed neural network models of biological sensory-motor control, autonomously learns the forward and inverse odometry of a differential drive robot through an unsupervised learning-by-doing cycle. After an initial learning phase, the controller can move the robot to an arbitrary stationary or moving target while compensating for noise and other forms of disturbance, such as wheel slippage or changes in the robot's plant. In addition, the forward odometric map allows the robot to reach targets in the absence of sensory feedback. The controller is also able to adapt in response to long-term changes in the robot's plant, such as a change in the radius of the wheels. In this article we review the NETMORC architecture and describe its simplified algorithmic implementation, we present new, quantitative results on NETMORC's performance and adaptability under noise-free and noisy conditions, we compare NETMORC's performance on a trajectory-following task with the performance of an alternative controller, and we describe preliminary results on the hardware implementation of NETMORC with the mobile robot ROBUTER.
Abstract--A new mathematical editor, based on the recognition of run-on discrete handwritten symbols, is proposed. The tested laboratory prototype of the system, modular and adaptable to the user habits and site requirements, uses a natural handwriting interface as well as human gestures. Two methods were used for symbol recognition, namely the state-of-the-art elastic matching algorithm and an Adaptive Resonance Theory neural architecture. The neural solution is proved to be better adapted to the cognitive nature of the problem and faster in both learning and test phases. Finally a novel attribute grammar permits the detection and subsequent correction of errors in the mathematical expressions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.