Aims/hypothesis. The molecular mechanisms of obesity-related insulin resistance are incompletely understood. Macrophages accumulate in adipose tissue of obese individuals. In obesity, monocyte chemoattractant protein-1 (MCP-1), a key chemokine in the process of macrophage accumulation, is overexpressed in adipose tissue. MCP-1 is an insulin-responsive gene that continues to respond to exogenous insulin in insulin-resistant adipocytes and mice. MCP-1 decreases insulin-stimulated glucose uptake into adipocytes. The A-2518G polymorphism in the distal regulatory region of MCP-1 may regulate gene expression. The aim of this study was to investigate the impact of this gene polymorphism on insulin resistance. Methods. We genotyped the Ludwigshafen Risk and Cardiovascular Health (LURIC) cohort (n=3307). Insulin resistance, estimated by homeostasis model assessment, and Type 2 diabetes were diagnosed in 803 and 635 patients respectively. Results. Univariate analysis revealed that plasma MCP-1 levels were significantly and positively correlated with WHR (p=0.011), insulin resistance (p=0.0097) and diabetes (p<0.0001). Presence of the MCP-1 G-2518 allele was associated with decreased plasma MCP-1 (p=0.017), a decreased prevalence of insulin resistance (odds ratio [OR]=0.82, 95% CI: 0.70-0.97, p=0.021) and a decreased prevalence of diabetes (OR=0.80, 95% CI: 0.67-0.96, p=0.014). In multivariate analysis, the G allele retained statistical significance as a negative predictor of insulin resistance (OR=0.78, p=0.0060) and diabetes (OR=0.80, p=0.018). Conclusions/interpretation. In a large cohort of Caucasians, the MCP-1 G-2518 gene variant was significantly and negatively correlated with plasma MCP-1 levels and the prevalence of insulin resistance and Type 2 diabetes. These results add to recent evidence supporting a role for MCP-1 in pathologies associated with hyperinsulinaemia.
CD8 T cells are essential in the defence against viruses, yet little is known of their participation in the host defence against parasites, such as Leishmania, which can cause a variety of clinical diseases, such as localized cutaneous, diffuse cutaneous, mucocutaneous and visceral leishmaniasis. Murine models of leishmaniasis suggest that CD8 T cells participate through IFN-gamma production, yet their cytotoxic capacity also plays an important role, as has been found in patients infected with various Leishmania strains, where CD8 T cell cytotoxicity and apoptosis of autologous Leishmania-infected macrophages correlate with cure. Yet the mechanisms underlying the CD8 T activation in patients with leishmaniasis remain an enigma. It is possible that dendritic cells activate CD8 T cells through mechanisms that include antigen cross-presentation. Here we summarize the recent findings of CD8 T cells in cutaneous leishmaniasis and discuss their significance in the control of the disease. Further knowledge in this field will undoubtedly improve the design of therapeutic and vaccine strategies.
Traditionally, penicillins have been used as antibacterial agents due to their characteristics and widespread applications with few collateral effects, which have motivated several theoretical and experimental studies. Despite the latter, their mechanism of biological action has not been completely elucidated. We present a theoretical study at the Hartree-Fock and density functional theory (DFT) levels of theory of a selected group of penicillins such as the penicillin-G, amoxicillin, ampicillin, dicloxacillin, and carbenicillin molecules, to systematically determine the electron structure of full -lactam antibiotics. Our results allow us to analyze the electronic properties of the pharmacophore group, the aminoacyl side-chain, and the influence of the substituents (R and X) attached to the aminoacyl side-chain at 6Ј (in contrast with previous studies focused at the 3Ј substituents), and to corroborate the results of previous studies performed at the semiempirical level, solely on the -lactam ring of penicillins. Besides, several density descriptors are determined with the purpose of analyzing their link to the antibacterial activity of these penicillin compounds. Our results for the atomic charges (fitted to the electrostatic potential), the bond orders, and several global reactivity descriptors, such as the dipole moments, ionization potential, hardness, and the electrophilicity index, led us to characterize: the active sites, the effect of the electron-attracting substituent properties and their physicochemical features, which altogether, might be important to understand the biological activity of these type of molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.