We have analyzed the colorimetric and spectral characteristics of 2600 daylight spectra (global spectral irradiances on a horizontal surface) measured for all sky states during a 2-year period at Granada, Spain. We describe in detail the chromaticity coordinates, correlated color temperatures (CCT), luminous efficacies, and relative UV and IR contents of Granada daylight. The chromaticity coordinates of Granada daylight lie far above the CIE locus at high CCTs (Ͼ9000 K), and a CCT of 5700 K best typifies this daylight. Our principalcomponents analysis shows that Granada daylight spectra can be adequately represented by using sixdimensional linear models in the visible, whereas seven-dimensional models are required if we include the UV or near-IR. Yet on average only three-dimensional models are needed to reconstruct spectra that are colorimetrically indistinguishable from the original spectra.
Many spectral-recovery methods using RGB digital cameras assume the underlying smoothness of illuminant and reflectance spectra, and apply low-dimensional linear models. The aim of the present work was to test whether a direct-mapping method could be used instead of a linear-models approach to recover spectral radiances and reflectances from natural scenes with an RGB digital camera and colored filters. In computer simulations, a conventional RGB digital camera with up to three colored filters was used to image scenes drawn from a hyperspectral image database. Three measures were used to evaluate recovery with the direct-mapping method: goodness-of-fit, root-mean-square error, and a color-difference metric. It was found that with two and three filters both spectral radiances and reflectances could be recovered sufficiently accurately for many practical applications. With little increase in computational complexity, an RGB camera and a few colored filters can provide significantly better recovery of natural scenes than an RGB camera alone.
The perceived colors of reflecting surfaces generally remain stable despite changes in the spectrum of the illuminating light. This color constancy can be measured operationally by asking observers to distinguish illuminant changes on a scene from changes in the reflecting properties of the surfaces comprising it. It is shown here that during fast illuminant changes, simultaneous changes in spectral reflectance of one or more surfaces in an array of other surfaces can be readily detected almost independent of the numbers of surfaces, suggesting a preattentive, spatially parallel process. This process, which is perfect over a spatial window delimited by the anatomical fovea, may form an early input to a multistage analysis of surface color, providing the visual system with information about a rapidly changing world in advance of the generation of a more elaborate and stable perceptual representation.parallel processing ͉ cone-excitation ratios ͉ surface color ͉ transient chromatic signals
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.