The development of syntheses providing enantiomerically pure alpha-amino acids has intrigued generations of chemists and been the subject of intense research. This report describes a general approach to functionalized alpha-amino acids based on catalytic asymmetric synthesis. Proline catalyzed Mannich-type reactions of N-PMP-protected alpha-imino ethyl glyoxylate with a variety of unmodified ketones to provide functionalized alpha-amino acids in high yields with excellent regio-, diastereo-, and enantioselectivities. Study of seven examples yielded six with product ee values of > or = 99%. In reactions involving ketone donors where diastereoisomeric products could be formed, two adjacent stereogenic centers were created simultaneously upon carbon-carbon bond formation with complete syn-stereocontrol. Significantly, this methodology utilizes readily available and rather inexpensive starting materials, does not require any preactivation of substrates or metal ion assistance, and can be carried out on a gram scale under operationally simple reaction conditions. The keto-functionality present in the products provides a particularly attractive site for versatile modifications. This study compliments and extends our bioorganic approach to asymmetric synthesis to a versatile synthon class. Given that we have shown that a variety of optically active amino acids can be synthesized with proline catalysis, where an L-amino acid begets other L-amino acids, our results may stimulate thoughts concerning prebiotic syntheses of optically active amino acids based on this route.
A full account of catalytic direct asymmetric Mannich-type reactions is presented describing the scope of amino acid-catalyzed additions of unmodified ketones to a large variety of imines. These reactions are performed under very mild, operationally simple, and environmentally friendly and benign conditions employing a one-pot, three-component protocol as well as preformed imines. Typically, products were obtained with high regio-and diastereoselectivities and excellent enantioselectivities. The methodology developed was applied as a powerful approach toward the synthesis of enantiomerically pure functionalized a-amino acids, g-lactones, oxime-functionalized amino acids as well as pharmacologically important targets such as (R)-cyclohexylglycine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.