The hydrogen evolution on platinum is a milestone reaction in electrocatalysis as well as an important reaction towards sustainable energy storage. Remarkably, the pH dependent kinetics of this reaction is not yet fully understood. Here, we present a detailed kinetic study of the hydrogen adsorption and evolution reaction on Pt(111) in a wide pH range. Impedance and Tafel slope measurements show that the hydrogen adsorption and hydrogen evolution are both slow in alkaline media, which is consistent with the observation of a shift in the rate-determining step for H2 evolution.Adding nickel to the Pt(111) surface lowers the barrier for the hydrogen adsorption rate in alkaline solutions and thereby enhances the hydrogen evolution rate. These observations are explained by a new model which highlights the role of the reorganization of interfacial water to accommodate charge transfer through the electric double layer, the energetics of which is controlled by how strongly water interacts with the interfacial field. The new model is supported by laser-induced temperature-jump measurements. Our model sheds new light on the origin of the slow kinetics for the hydrogen evolution reaction in alkaline media.
The kinetics of the electrochemical oxidation of a CO adlayer on Pt[n(111)×(111)] electrodes in 0.5 M H 2 SO 4 has been studied using chronoamperometry. The objective is to elucidate the effect of the crystalline defects on the rate of the reaction by using a series of stepped surfaces. The reaction kinetics of the main oxidative process can be modeled using the mean-field approximation for the Langmuir-Hinshelwood mechanism, implying fast diffusion of adsorbed CO on the Pt[n(111)×( 111)] surfaces under electrochemical conditions. The apparent rate constant for the electrochemical CO oxidation, determined by a fitting of the experimental data with the mean-field model, is found to be proportional to the step fraction (1/n) for the surfaces with n > 5, proving steps to be the active sites for the CO adlayer oxidation. An apparent intrinsic rate constant is determined. The potential dependence of the apparent rate constants is found to be structure insensitive with a Tafel slope of ca. 80 mV/dec, suggesting the presence of a slow chemical step in an ECE reaction mechanism.
The quantitative analysis of the different surface sites on platinum samples is attempted from pure voltammetric data. This analysis requires independent knowledge of the fraction of two-dimensional (111) and (100) domains. Specific site-probe reactions are employed to achieve this goal. Irreversibly-adsorbed bismuth and tellurium have been revealed to be sensitive to the presence of (111) terrace domains of different width whereas almost all sites involved in (100) ordered domains have been characterized through germanium adatoms. The experimental protocol follows that used with well-defined single-crystal electrodes and, therefore, requires careful control of the surface cleanliness. Platinum basal planes and their vicinal stepped surfaces have been employed to obtain calibration plots between the charge density measured under the adatom redox peak, specific for the type of surface site, and the corresponding terrace size. The evaluation of the (100) bidimensional domains can also be achieved using the voltammetric profiles, once the fraction of (111) ordered domains present in the polyoriented platinum has been determined and their featureless contribution has been subtracted from the whole voltammetric response. Using that curve, it is possible to perform a deconvolution of the adsorption states of the polycrystalline sample different from those related to (111) domains. The fraction of (100)-related states in the deconvoluted voltammogram can then be compared to that expected from the independent estimation coming from the charge involved in the redox process undergone by the irreversibly-adsorbed germanium and thus check the result of the deconvolution. The information about the surface-site distribution can also be applied to analyze the voltammetric profile of nanocrystalline platinum electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.