The mechanisms that underlie the potent Th1-adjuvant capacity of poly(methyl vinyl ether-co-maleic anhydride) nanoparticles (NPs) were investigated. Traditionally, polymer NPs have been considered delivery systems that promote a closer interaction between antigen and antigen-presenting cells (APCs). Our results revealed that poly(anhydride) NPs also act as agonists of various Toll-like receptors (TLRs) (TLR2, -4, and -5), triggering a Th1-profile cytokine release (gamma interferon [IFN-␥], 478 pg/ml versus 39.6 pg/ml from negative control; interleukin-12 [IL-12], 40 pg/ml versus 7.2 pg/ml from negative control) and, after incubation with dendritic cells, inducing a 2.5-to 3.5-fold increase of CD54 and CD86 costimulatory molecule expression. Furthermore, in vivo studies suggest that NPs actively elicit a CD8 ؉ T-cell response. Immunization with empty NPs resulted in a significant delay in the mean survival date (from day 7 until day 23 postchallenge) and a protection level of 30% after challenge against a lethal dose of Salmonella enterica serovar Enteritidis. Taken together, our results provide a better understanding of how NPs act as active Th1 adjuvants in immunoprophylaxis and immunotherapy through TLR exploitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.