We present an approach to calculating the quantum resonances and resonance wave functions of chaotic scattering systems, based on the construction of states localized on classical periodic orbits and adapted to the dynamics. Typically only a few such states are necessary for constructing a resonance. Using only short orbits (with periods up to the Ehrenfest time), we obtain approximations to the longest-living states, avoiding computation of the background of short living states. This makes our approach considerably more efficient than previous ones. The number of long-lived states produced within our formulation is in agreement with the fractal Weyl law conjectured recently in this setting. We confirm the accuracy of the approximations using the open quantum baker map as an example.
We investigate the properties of the semiclassical short periodic orbit approach for the study of open quantum maps that was recently introduced in [M. Novaes, J.M. Pedrosa, D. Wisniacki, G.G. Carlo, and J.P. Keating, Phys. Rev. E 80, 035202(R) 2009]. We provide conclusive numerical evidence, for the paradigmatic systems of the open baker and cat maps, that by using this approach the dimensionality of the eigenvalue problem is reduced according to the fractal Weyl law. The method also reproduces the projectors |ψ R n ψ L n |, which involves the right and left states associated with a given eigenvalue and is supported on the classical phase space repeller.
We study relevant features of the spectrum of the quantum open baker map. The opening consists of a cut along the momentum p direction of the 2-torus phase space, modeling an open chaotic cavity. We study briefly the classical forward trapped set and analyze the corresponding quantum nonunitary evolution operator. The distribution of eigenvalues depends strongly on the location of the escape region with respect to the central discontinuity of this map. This introduces new ingredients to the association among the classical escape and quantum decay rates. Finally, we could verify that the validity of the fractal Weyl law holds in all cases.
We study families of open chaotic maps that classically share the same asymptotic properties--forward and backward trapped sets, repeller dimensions, and escape rate--but differ in their short time behavior. When these maps are quantized we find that the fine details of the distribution of resonances and the corresponding eigenfunctions are sensitive to the initial shape and size of the openings. We study phase space localization of the resonances with respect to the repeller and find strong delocalization effects when the area of the openings is smaller than ℏ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.