Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of the Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups, and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g., starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for crossspecies infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy.
West Nile virus (WNV) is an emerging zoonotic pathogen whose geographic spread and incidence in humans, horses and birds has increased significantly in recent years. WNV has long been considered a mild pathogen causing self-limiting outbreaks. This notion has changed as WNV is causing large epidemics with a high impact on human and animal health. This has been particularly noteworthy since its introduction into North America in 1999. There, native bird species have been shown to be highly susceptible to WNV infection and disease with high mortalities. For this reason, the effect of WNV infection in North American bird species has been thoroughly studied by means of experimental inoculations in controlled trials. To a lesser extent, European wild birds have been shown to be affected clinically by WNV infection. Yet experimental studies on European wild bird species are lacking. The red-legged partridge (Alectoris rufa) is a gallinaceous bird indigenous to the Iberian Peninsula, widely distributed in South Western Europe. It plays a key role in the Mediterranean ecosystem and constitutes an economically important game species. As such it is raised intensively in outdoor facilities. In this work, red-legged partridges were experimentally infected with two recent WNV isolates from the Western Mediterranean area: Morocco/2003 and Spain/2007. All inoculated birds became viremic and showed clinical disease, with mortality rates of 70% and 30%, respectively. These results show that Western Mediterranean WNV variants can be pathogenic for some European bird species, such as the red-legged partridge.
Potential factors influencing spermatozoa survival to cryopreservation and thawing were analyzed across a range of the following avian species: domestic chicken (Gallus domesticus), domestic turkey (Meleagris gallopavo), golden eagle (Aquila chrysaetos), Bonelli's eagle (Hieraaetus fasciatus), imperial eagle (Aquila adalberti), and peregrine falcon (Falco peregrinus). Studies focused on spermatozoa tolerance to the following: 1) osmotic stress, 2) different extracellular concentrations of the cryoprotectant dimethylacetamide (DMA), 3) equilibration times of 1 versus 4 h, 4) equilibration temperature of 4 versus 21 degrees C, and 5) rapid versus slow cooling before cryopreservation and standard thawing. Sperm viability was assessed with the live/dead stain (SYBR-14/propidium iodine). Sperm viability at osmolalities >/=800 mOsm was higher (P: < 0.05) in raptor than poultry semen. Return to isotonicity after exposure to hypertonicity (3000 mOsm) decreased (P: < 0.05) number of viable spermatozoa in chicken, turkey, and golden and Bonelli's eagle spermatozoa but not in imperial eagle or peregrine falcon spermatozoa. Differences were found in spermatozoa resistance to hypotonic conditions, with eagle species demonstrating the most tolerance. Semen, equilibrated for 1 h (4 degrees C) in diluent containing DMA (> or =2.06 M), experienced decreased (P: < 0. 05) spermatozoa survival in all species, except the golden eagle and peregrine falcon. Number of surviving spermatozoa diminished progressively with increasing DMA concentrations in all species. Increased equilibration temperature (from 4 to 21 degrees C) markedly reduced (P: < 0.05) spermatozoa survival in all species except the Bonelli's eagle and turkey. Rapid cooling was detrimental (P: < 0.05) to spermatozoa from all species except the imperial eagle and the chicken. These results demonstrate that avian spermatozoa differ remarkably in response to osmotic changes, DMA concentrations, equilibration time, temperature, and survival after fast or slow freezing. These differences emphasize the need for species-specific studies in the development and enhancement of assisted breeding for poultry and endangered species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.