The controllable growth of non-centrosymmetric metal organic framework (MOF) beyond the conventional micrometer crystal dimensions would represent an enabling step in the development of MOF-based devices for coherent nonlinear optics. This goal has been elusive so far, as MOF crystal typical self-assemble under metastable synthesis conditions that have several competing crystallization pathways open, and only a modest amount of external control over the crystal nucleation and growth rates is currently possible. We overcome some of these issues and achieve the controlled growth of large single crystals of the non-centrosymmetric MOF Zn(3-ptz)<sub>2</sub>, with surface areas of up to 25 mm<sup>2</sup> in 24 hours, in a single solvothermal reaction with <i>in-situ</i> ligand formation. No additional growth steps are necessary. We carry out a mechanistic study to unravel the reaction steps leading to the self-assembly of Zn(3-ptz)<sub>2</sub> crystals, by identifying and isolating several intermediate crystal structures that directly connect with the target MOF, and reversibly interconverting between them. We identify the synthesis parameters that control the size and morphology of our target MOF crystal and model its nucleation and growth kinetics using <i>ex-situ</i> image processing data. Our work is a step forward is understanding and controlling the factors that stabilize the growth of high-quality MOF crystals with sizes that are relevant for coherent optics, thus untapping possible applications of metal-organic frameworks in classical and quantum communication technology.
The controllable growth of non-centrosymmetric metal organic framework (MOF) beyond the conventional micrometer crystal dimensions would represent an enabling step in the development of MOF-based devices for coherent nonlinear optics. This goal has been elusive so far, as MOF crystal typical self-assemble under metastable synthesis conditions that have several competing crystallization pathways open, and only a modest amount of external control over the crystal nucleation and growth rates is currently possible. We overcome some of these issues and achieve the controlled growth of large single crystals of the non-centrosymmetric MOF Zn(3-ptz)<sub>2</sub>, with surface areas of up to 25 mm<sup>2</sup> in 24 hours, in a single solvothermal reaction with <i>in-situ</i> ligand formation. No additional growth steps are necessary. We carry out a mechanistic study to unravel the reaction steps leading to the self-assembly of Zn(3-ptz)<sub>2</sub> crystals, by identifying and isolating several intermediate crystal structures that directly connect with the target MOF, and reversibly interconverting between them. We identify the synthesis parameters that control the size and morphology of our target MOF crystal and model its nucleation and growth kinetics using <i>ex-situ</i> image processing data. Our work is a step forward is understanding and controlling the factors that stabilize the growth of high-quality MOF crystals with sizes that are relevant for coherent optics, thus untapping possible applications of metal-organic frameworks in classical and quantum communication technology.
<div>A new phosphole derivative 2,5-di(2-quinolyl)-1-phenylphosphole (<b>1</b>) was synthesized by using the Fagan-Nugent method. Phosphole was obtained as an air stable solid in high yield (73%). Additionally, two new copper phosphole complexes [CuX(Phosphole)<sub>2</sub>] (X = Cl (<b>2a</b>), I (<b>2b</b>), Phosphole = <b>1</b>) have been synthesized by reaction of CuX (X = Cl, I) and phosphole derivative (<b>1</b>). All compound were characterized by NMR, ESI-MS, UV–Vis and fluorescence spectroscopy. The photophysical properties of all compounds were analyzed, UV-Vis spectra of the complexes <b>2a-b</b> shown π–π* transitions with shift very similar to the found in the free phosphole due to that their symmetrical structures inhibits efficient ILCT. We have found that the compounds <b>1</b>, <b>2a-b</b> exhibited fluorescence between 460 and 583 nm with quantum yields of Φ<sub>f</sub> = 0.04 – 0.11. The emission energy of <b>2b</b> is higher than <b>2a</b>, suggesting that λ<sub>max</sub> is affected by the ligand-field strength of the halogen ions in the complexes (I<sup>-</sup> < Cl<sup>-</sup> ).</div>
<p>A
copper(I) complex [CuCl{<i>k</i><sup>1</sup>(P)-<b>1a</b>}{k<sup>2</sup>(P,N)-<b>1a</b>}]
(<b>1a</b> = 2,5-bis(2-pyridyl)-1-phenylphosphole) with pseudo tetrahedral
geometry was synthesized. In solution, <b>1a</b> displays a hemilabile
behaviour leading to a dynamic equilibrium between four and three-coordinate
specie. Its catalytic potential was tested in synthesis of propargylamines and
1,2,3-triazoles via three-component reactions. <a>Experimental
results discussed on base to DFT calculations. </a></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.