Lung cancer (LC) is the leading cause of cancer death in men worldwide and has significantly increased in women. Differences in non-small cell lung cancer (NSCLC) behavior, prognosis, and response to treatment have been reported by sex and hormonal status, with premenopausal women presenting the worst prognosis compared to postmenopausal women and men. Additionally, the use of hormonal replacement therapy significantly increases NSCLC mortality; supporting the role of estrogen signaling in the pathogenesis of LC. The mechanisms by which estrogen promotes lung carcinogenesis have not been fully elucidated. Estrogen, through its receptor, can stimulate LC cell proliferation, death resistance, angiogenesis, migration and metastasis. Estrogen also induces expression of pro-inflammatory proteins and ligands that promote tumor evasion, suggesting that estrogen might modify the microenvironment and anti-tumor immune response. Recent reports have shown an interaction between the epidermal growth factor receptor (EGFR) pathway and estrogen signaling in lung adenocarcinoma, whence, combined treatment based on tyrosine kinase inhibitors (TKIs) and antiestrogen therapy is beginning to be evaluated. This review focuses on the differences in NSCLC behavior by sex and hormonal status, highlighting the role of estrogen and its receptors in lung carcinogenesis and LC prognosis. Due to the importance of estrogen in NSCLC development and progression we finally discuss the potential of antiestrogen therapy in LC treatment and show the results from preclinical and clinical trials.
Background:Non-small-cell lung cancer (NSCLC) patients often exhibit neutrophilia, which has been associated with poor clinical outcomes. However, the mechanisms that lead to neutrophilia have not been fully established. CD47 is an antiphagocytic molecule that promotes neutrophil recruitment.Methods:Blood was collected from 50 treatment-naive patients with advanced NSCLC and from 25 healthy subjects. The frequency of CD66b+ cells and the expression of CD47 were determined by flow cytometry. Neutrophil apoptosis was determined by 7-amino-actinomycin D/Annexin V-APC staining. Phagocytosis was assessed by flow cytometry. Reactive oxygen species production after phorbol 12-myristate 13-acetate treatment was quantified by 2′,7′-dichlorofluorescein fluorescence. Pro-inflammatory plasma cytokines were quantified using a cytometric bead array assay.Results:The percentage of circulating neutrophils was significantly higher in patients than in controls (P<0.001). Patient-derived neutrophils had a higher oxidative potential than those of controls (P=0.0286). The number of neutrophils in late apoptosis/necrosis was lower in patients than in controls (P=0.0317). Caspase 3/7 activation was also lower in patients than in controls (P=0.0079). CD47 expression in whole-blood samples and in the neutrophil fraction was higher in NSCLC patients than in controls (P=0.0408 and P<0.001). Patient-derived neutrophils were phagocytosed at a lower rate than those of controls (P=0.0445). CD47 expression in neutrophils negatively correlated with their ingestion by macrophages (P=0.0039). High CD47 expression was associated with a lower overall survival.Conclusions:Increased CD47 expression on the surface of neutrophils was associated with a delay in neutrophil apoptosis and with an impairment in their phagocytic clearance by macrophages, suggesting that CD47 overexpression may be one of the underlying mechanisms leading to neutrophilia in NSCLC patients.
Binding of programmed death-1 (PD-1) with its ligands (PD-L1/2) transmits a co-inhibitory signal in activated T-cells that promotes T-cell exhaustion, leading to tumor immune evasion. The efficacy of antibodies targeting PD-1 and PD-L1 has led to a paradigm shift in lung cancer treatment but the prognostic and predictive value of tumor PD-L1 expression remains controversial. Evaluating PD-1, PD-L1/2 expression in peripheral blood cells may serve as a potential biomarker for prognosis and response to therapy. In this prospective observational study, plasma cytokine levels and PD-1, PD-L1 and PD-L2 expression was evaluated in circulating CD3+, CD3+CD4+ and CD3+CD8+ cells from 70 treatment-naïve patients with advanced NSCLC (Stage IIIB and IV) and from 10 healthy donors. The primary objective was to assess OS according to PD-1, PD-L1, PD-L2 expression status on PBMCs and lymphocyte subsets. Our results indicate that the percentage of PD-L1+CD3+, PD-L1+CD3+CD8+ PD-L2+PBMCs, PD-L2+CD3+, PD-L2+CD3+CD4+ cells was higher in patients than in healthy donors. Survival was decreased among patients with a high percentage of either PD-1+PBMCs, PD-1+CD3+, PD-L1+CD3+, PD-L1+CD3+CD8+, PD-L2+CD3+, PD-L2+CD3+CD4+, or PD-L2+CD3+CD8+ cells. IL-2 and TNF-α showed the strongest association with PD-L1 and PD-L2 expression on specific subsets of T-lymphocytes. Our findings suggest that increased PD-1/PD-L1/PDL-2 expression in PBMCs, particularly in T-cells, may be an additional mechanism leading to tumor escape from immune control. This study is registered with ClinicalTrials.gov, number NCT02758314.
Polymorphonuclear-MDSC (PMN-MDSC) have emerged as an independent prognostic factor for survival in NSCLC. Similarly, cytokine profiles have been used to identify subgroups of NSCLC patients with different clinical outcomes. This prospective study investigated whether the percentage of circulating PMN-MDSC, in conjunction with the levels of plasma cytokines, was more informative of disease progression than the analysis of either factor alone. We analyzed the phenotypic and functional profile of peripheral blood T-cell subsets (CD3, CD3CD4 and CD3CD8), neutrophils (CD66b) and polymorphonuclear-MDSC (PMN-MDSC; CD66bCD11bCD15CD14-) as well as the concentration of 14 plasma cytokines (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12 p70, IL-17A, IL-27, IL-29, IL-31, and IL-33, TNF-α, IFN-γ) in 90 treatment-naïve NSCLC patients and 25 healthy donors (HD). In contrast to HD, NSCLC patients had a higher percentage of PMN-MDSC and neutrophils (P < 0.0001) but a lower percentage of CD3, CD3CD4 and CD3CD8 cells. PMN-MDSC% negatively correlated with the levels of IL1-β, IL-2, IL-27 and IL-29. Two groups of patients were identified according to the percentage of circulating PMN-MDSC. Patients with low PMN-MDSC (≤ 8%) had a better OS (22.1 months [95% CI 4.3-739.7]) than patients with high PMN-MDSC (9.3 months [95% CI 0-18.8]). OS was significantly different among groups of patients stratified by both PMN-MDSC% and cytokine levels. In sum, our findings provide evidence suggesting that PMN-MDSC% in conjunction with the levels IL-1β, IL-27, and IL-29 could be a useful strategy to identify groups of patients with potentially unfavorable prognoses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.