G-Protein Coupled Receptors (GPCRs) are a big family of eukaryotic cell transmembrane proteins, responsible for numerous biological processes. From a practical viewpoint around 34% of the drugs approved by the US Food and Drug Administration target these receptors. They can be analyzed from their simulated molecular dynamics, including the prediction of their behavior in the presence of drugs. In this paper, the capability of Long Short-Term Memory Networks (LSTMs) are evaluated to learn and predict the molecular dynamic trajectories of a receptor. Several models were trained with the 3D position of the amino acids of the receptor considering different transformations on the position of the amino acid, such as their centers of mass, the geometric centers and the position of the α–carbon for each amino acid. The error of the prediction of the position was evaluated by the mean average error (MAE) and root-mean-square deviation (RMSD). The LSTM models show a robust performance, with results comparable to the state-of-the-art in non-dynamic 3D predictions. The best MAE and RMSD values were found for the mass center of the amino acids with 0.078 Å and 0.156 Å respectively. This work shows the potential of LSTM to predict the molecular dynamics of GPRCs.
As the tomato (Solanum lycopersicum L.) is one of the most important crops worldwide, and the conventional approach for weed control compromises its potential productivity. Thus, the automatic detection of the most aggressive weed species is necessary to carry out selective control of them. Precision agriculture associated with computer vision is a powerful tool to deal with this issue. In recent years, advances in digital cameras and neural networks have led to novel approaches and technologies in PA. Convolutional neural networks (CNNs) have significantly improved the precision and accuracy of the process of weed detection. In order to apply on-the-spot herbicide spraying, robotic weeding, or precise mechanical weed control, it is necessary to identify crop plants and weeds. This work evaluates a novel method to automatically detect and classify, in one step, the most problematic weed species of tomato crops. The procedure is based on object detection neural networks called RetinaNet. Moreover, two current mainstream object detection models, namelyYOLOv7 and Faster-RCNN, as a one and two-step NN, respectively, were also assessed in comparison to RetinaNet. CNNs model were trained on RGB images monocotyledonous (Cyperus rotundus L., Echinochloa crus galli L., Setaria verticillata L.) and dicotyledonous (Portulaca oleracea L., Solanum nigrum L.) weeds. The prediction model was validated with images not used during the training under the mean average precision (mAP) metric. RetinaNet performed best with an AP ranging from 0.900 to 0.977, depending on the weed species. Faster-RCNN and YOLOv7 also achieved satisfactory results, in terms of mAP, particularly through data augmentation. In contrast to Faster CNN, YOLOv7 was less precise when discriminating monocot weed species. The results provide a better insight on how weed identification methods based on CNN can be made more broadly applicable for real-time applications.
G protein-coupled receptors (GPCRs) are a large super-family of cell membrane proteins that play an important physiological role as transmitters of extra-cellular signals.Signal transmission through the cell membrane depends upon conformational changes in the transmembrane region of the receptor, which makes the investigation of the dynamics in these regions particularly relevant.Molecular dynamics simulations can provide information about the conformational states of the receptor at the atom level and Machine Learning methods can be useful tools for knowledge discovery from this information. In this paper, Recurrent and Convolutional Neural Networks are used to predict the molecular dynamics of GPCRs in different conformations, using the \textbeta 2AR GPRC as an illustration of the process and focusing on specific receptor regions.Active and inactive states of the GPRC are analysed in six scenarios involving APO, Full Agonist (BI-167107) and Partial Inverse Agonist (carazolol) of the receptor. Three Machine Learning models with increasing complexity in terms of neural network architecture are evaluated and their results compared.Results show that the transmembrane helices are the regions whose dynamics are best predicted by these models.
G protein-coupled receptors are a large super-family of cell membrane proteins that play an important physiological role as transmitters of extra-cellular signals. Signal transmission through the cell membrane depends on the conformational changes of the transmembrane region of the receptor and the investigation of the dynamics in these regions is therefore key. Molecular Dynamics (MD) simulations can provide information of the receptor conformational states at the atom level and machine learning (ML) methods can be useful for the analysis of these data. In this paper, Recurrent Neural Networks (RNNs) are used to evaluate whether the MD can be modeled focusing on the different regions of the receptor (intra-cellular, extra-cellular and each transmembrane regions (TM)). The best results, as measured by root-mean-square deviation (RMSD), are 0.1228 Å for TM4 of the 2rh1 (inactive state) and 0.1325 Å for TM4 of the 3p0g (active state), which are comparable to the state-of-theart in non-dynamic 3-D predictions, showing the potential of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.