We present the first example of a multi-resonant thermally activated delayed fluorescent (MR-TADF) extended helicene, Hel-DiDiKTa. This S-shaped double helicene exhibits sky-blue emission, a singlet-triplet energy gap, EST, of 0.15...
The outstanding photovoltaic performances of lead halide perovskite (LHP) thin film solar cells are due in particular to the large diffusion length of photocarriers. The mechanism behind this property and its dependence on the various anions and cations in the LHP material composition are still an active topic of debate. Here, we apply ultrabroadband terahertz spectroscopy with a time resolution ≤ 200 fs to probe the early carrier mobility dynamics of photoexcited perovskite samples of different chemical compositions. An increase in the carrier mobility with time constants in the range of 0.3 to 0.7 ps is observed for different LHPs, in which the signal amplitude is larger at shorter excitation wavelengths. This feature is assigned to the relaxation of hot carriers from low-curvature regions of the band structure to the bottom of the valley, where their effective mass accounts for the maximum mobility.The dependence of the mobility dynamics on the initial photogenerated carrier population shows that carrier cooling competes with a dynamic screening effect associated with polaron formation and relaxation. A kinetic model that considers all competing processes is proposed. Simulations based on this model allow us to fit the experimental data well and evidence a composition dependence of the dynamic screening lifetime.
The mechanism of photoinduced symmetry-breaking charge separation in solid cyanine salts at the base of organic photovoltaic and optoelectronic devices is still debated. Here, we employ femtosecond transient absorption spectroscopy...
The use of a bulk heterojunction of organic semiconductors to drive photoelectrochemical water splitting is an emerging trend; however, the optimum energy levels of the donor and acceptor have not been established for photoanode operation with respect to electrolyte pH. Herein, we prepare a set of donor polymers and non-fullerene acceptors with varying energy levels to probe the effect of photogenerated electron injection into a SnO 2 -based substrate under sacrificial photo-oxidation conditions. Photocurrent density (for sacrificial oxidation) up to 4.1 mA cm −2 was observed at 1.23 V vs reversible hydrogen electrode in optimized photoanodes. Moreover, we establish that a lowerlying donor polymer leads to improved performance due to both improved exciton separation and better charge collection. Similarly, lower-lying acceptors also give photoanodes with higher photocurrent density but with a later photocurrent onset potential and a narrower range of pH for good operation due to the Nernstian behavior of the SnO 2 , which leads to a smaller driving force for electron injection at high pH.
We synthesized a fluorene‐bithiophene co‐polymer with chiral side chains (cPFT2) and investigated its chiroptical properties via synchotronradiation circular dichroism. We observed that thin films of the polymer display an intense circular dichroism (CD) upon annealing, which is of opposite handedness to the CD reported for similar polyfluorenes bearing the same enantiomeric chiral side chain. We then contrast the properties of this polymer with chiral side chain fluorene homopolymer (cPF) and observe large differences in their thin film morphology. Using photoluminescence spectroscopy, we uncover evidence of polymer chain bending in cPFT2, which is further supported by theoretical calculations, and propose an explanation for the observed inverted optical activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.