This research obtains a mathematical formulation to determine the heat transfer in a transient state, in a calorimeter cell, considering an adiabatic system. The development of the cell was established and the mathematical model was transiently solved, which approximated the physical phenomenon under the cell operation. A numerical method for complex geometries was used to validate performance. The results obtained in the transient heat transfer in a cylinder under boundary and initial conditions were compared using an analytical solution and numerical analysis employing the finite-element method with commercial software. The study from the temperature distribution can afford, selection between a cylindrical and spherical geometry, design criteria that are generated by changing parameters such as dimension, temperature, and working fluids to develop an adiabatic calorimeter to measure the heat capacity in fluids. We show the mathematical solution with its initial and boundary conditions as well as a comparison with a numerical solution for a cylindrical cell with a maximum error from 0.075% in the temperature value, along with a theoretical and numerical analysis for a temperature difference of 1 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.