The ultrafast proton transfer dynamics of salicylideneaniline has been theoretically analyzed in the ground and first singlet excited electronic states using density functional theory (DFT) and time-dependent DFT calculations, which predict a (pi,pi( *)) barrierless excited state intramolecular proton transfer (ESIPT). In addition to this, the photochemistry of salicylideneaniline is experimentally known to present fast depopulation processes of the photoexcited species before and after the proton transfer reaction. Such processes are explained by means of conical intersections between the ground and first singlet (pi,pi( *)) excited electronic states. The electronic energies obtained by the time-dependent density functional theory formalism have been fitted to a monodimensional potential energy surface in order to perform quantum dynamics study of the processes. Our results show that the proton transfer and deactivation of the photoexcited species before the ESIPT processes are completed within 49.6 and 37.7 fs, respectively, which is in remarkable good agreement with experiments.
The ultrafast proton-transfer dynamics of 1-hydroxy-2-acetonaphthone has been theoretically analyzed in the ground and first singlet excited electronic states by density functional theory calculations and quantum dynamics. The potential energies obtained in the ground electronic state reveal that the proton-transfer process does not lead to a stable keto tautomer unless the transfer of the hydrogen from the enol form is accompanied by an internal rotation of the newly formed O-H bond. Calculations in the first singlet excited electronic state point to a very low barrier for the formation of the keto tautomer. The analysis of the calculated frequencies of the two tautomers in the excited state unveils a coupling of the skeletal motions (low frequency modes) with the proton-transfer process, as it has been stated from time-resolved experiments. The electronic energies obtained by the time-dependent density functional theory formalism have been fitted to a monodimensional potential energy surface in order to perform an exact quantum dynamics study of the process. Our results show that the proton-transfer process is completed within 25.5 fs, in remarkable good agreement with experiments.
The proton-transfer dynamics in the aromatic Schiff base salicylidene methylamine has been theoretically analyzed in the ground and first singlet (pi,pi) excited electronic states by density functional theory calculations and quantum wave-packet dynamics. The potential energies obtained through electronic calculations that use the time-dependent density functional theory formalism, which predict a barrierless excited-state intramolecular proton transfer, are fitted to a reduced three-dimensional potential energy surface. The time evolution in this surface is solved by means of the multiconfiguration time-dependent Hartree algorithm applied to solve the time-dependent Schrödinger equation. It is shown that the excited-state proton transfer occurs within 11 fs for hydrogen and 25 fs for deuterium, so that a large kinetic isotope effect is predicted. These results are compared to those of the only previous theoretical work published on this system [Zgierski, M. Z.; Grabowska, A. J. Chem. Phys. 2000, 113, 7845], reporting a configuration interaction singles barrier of 1.6 kcal mol(-1) and time reactions of 30 and 115 fs for the hydrogen and deuterium transfers, respectively, evaluated with the semiclassical instanton approach.
We use thermodynamic integration (TI) and explicit solvent molecular dynamics (MD) simulation to estimate the absolute free energy of host–guest binding. In the unbound state, water molecules visit all of the internally accessible volume of the host, which is fully hydrated on all sides. Upon binding of an apolar guest, the toroidal host cavity is fully dehydrated; thus, during the intermediate λ stages along the integration, the hydration of the host fluctuates between hydrated and dehydrated states. Estimating free energies by TI can be especially challenging when there is a considerable difference in hydration between the two states of interest. We investigate these aspects using the popular TIP3P and TIP4P water models. TI free energy estimates through MD largely depend on water-related interactions, and water dynamics significantly affect the convergence of binding free energy calculations. Our results indicate that wetting/dewetting transitions play a major role in slowing the convergence of free energy estimation. We employ two alternative approaches—one analytical and the other empirically based on actual MD sampling—to correct for the standard state free energy. This correction is sizable (up to 4 kcal/mol), and the two approaches provide corrections that differ by about 1 kcal/mol. For the system considered here, the TIP4P water model combined with an analytical correction for the standard state free energy provides higher overall accuracy. This observation might be transferable to other systems in which water-related contributions dominate the binding process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.