We analyze in full-detail the geometric structure of the covariant phase space (CPS) of any local field theory defined over a space-time with boundary. To this end, we introduce a new frame: the "relative bicomplex framework". It is the result of merging an extended version of the "relative framework" (initially developed in the context of algebraic topology by R. Bott and L.W. Tu in the 1980s to deal with boundaries) and the variational bicomplex framework (the differential geometric arena for the variational calculus). The relative bicomplex framework is the natural one to deal with field theories with boundary contributions, including corner contributions. In fact, we prove a formal equivalence between the relative version of a theory with boundary and the non-relative version of the same theory with no boundary. With these tools at hand, we endow the space of solutions of the theory with a (pre)symplectic structure canonically associated with the action and which, in general, has boundary contributions. We also study the symmetries of the theory and construct, for a large group of them, their Noether currents and charges. Moreover, we completely characterize the arbitrariness (or lack thereof for fiber bundles with contractible fibers) of these constructions. This clarifies many misconceptions about the role of the boundary terms in the CPS description of a field theory. Finally, we provide what we call the CPS-algorithm to construct the aforementioned (pre)symplectic structure and apply it to some relevant examples.
The goal of this paper is to propose and discuss a practical way to implement the Dirac algorithm for constrained field models defined on spatial regions with boundaries. Our method is inspired in the geometric viewpoint developed by Gotay, Nester, and Hinds (GNH) to deal with singular Hamiltonian systems. We pay special attention to the specific issues raised by the presence of boundaries and provide a number of significant examples-among them field theories related to general relativity-to illustrate the main features of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.