PurposePatients with Fanconi anaemia (FA), a rare DNA repair genetic disease, exhibit chromosome fragility, bone marrow failure, malformations and cancer susceptibility. FA molecular diagnosis is challenging since FA is caused by point mutations and large deletions in 22 genes following three heritability patterns. To optimise FA patients’ characterisation, we developed a simplified but effective methodology based on whole exome sequencing (WES) and functional studies.Methods68 patients with FA were analysed by commercial WES services. Copy number variations were evaluated by sequencing data analysis with RStudio. To test FANCA missense variants, wt FANCA cDNA was cloned and variants were introduced by site-directed mutagenesis. Vectors were then tested for their ability to complement DNA repair defects of a FANCA-KO human cell line generated by TALEN technologies.ResultsWe identified 93.3% of mutated alleles including large deletions. We determined the pathogenicity of three FANCA missense variants and demonstrated that two FANCA variants reported in mutations databases as ‘affecting functions’ are SNPs. Deep analysis of sequencing data revealed patients’ true mutations, highlighting the importance of functional analysis. In one patient, no pathogenic variant could be identified in any of the 22 known FA genes, and in seven patients, only one deleterious variant could be identified (three patients each with FANCA and FANCD2 and one patient with FANCE mutations)ConclusionWES and proper bioinformatics analysis are sufficient to effectively characterise patients with FA regardless of the rarity of their complementation group, type of mutations, mosaic condition and DNA source.
Secondary acute myeloid leukemia (sAML) comprises a heterogeneous group of patients, and is associated with poor overall survival (OS). We analyze the characteristics, treatment patterns and outcomes of sAML adult patients of the Programa Español de Tratamientos en Hematología (PETHEMA) registry. Overall, 6211 (72.9%) were de novo and 2310 (27.1%) sAML, divided into myelodysplastic syndrome (MDS-AML, 44%), MDS/myeloproliferative (MDS/MPN-AML, 10%), MPN-AML (11%), therapy-related (t-AML, 25%), and antecedent neoplasia without prior chemotherapy/radiotherapy (neo-AML, 9%). Compared to de novo, sAML were older (median age 69 years old), had more ECOG ≥2 (35%) or high-risk cytogenetics (40%), less FLT3-ITD (11%) and NPM1 mutations (21%), and received less intensive chemotherapy regimens (38%) (all P<0.001). Median OS was higher in de novo than in sAML (10.9 vs 5.6 months, P<0.001); and shorter in sAML after hematologic disorder (MDS, MDS/MPN or MPN) as compared to t-AML and neo-AML (5.3 vs 6.1 vs 5.7 months, respectively, P=0.04). After intensive chemotherapy, median OS was better among de novo and neo-AML patients (17.2 and 14.6 months). No OS differences were observed after hypomethylating agents according to type of AML. sAML was as an independent adverse prognostic factor for OS. We confirm high prevalence and adverse features of sAML and we establish its independent adverse prognostic value. This study was registered at www.clinicaltrials.gov as #NCT02607059.
BACKGROUND: Options to treat elderly patients (≥65 years old) newly diagnosed with acute myeloid leukemia (AML) include intensive and attenuated chemotherapy, hypomethylating agents with or without venetoclax, and supportive care. This multicenter, randomized, open-label, phase 3 trial was designed to assess the efficacy and safety of a fludarabine, cytarabine, and filgrastim (FLUGA) regimen in comparison with azacitidine (AZA). METHODS: Patients (n = 283) were randomized 1:1 to FLUGA (n = 141) or AZA (n = 142). Response was evaluated after cycles 1, 3, 6, and 9. Measurable residual disease (MRD) was assessed after cycle 9. When MRD was ≥0.01%, patients continued with the treatment until relapse or progressive disease. Patients with MRD < 0.01% suspended treatment to enter the follow-up phase. RESULTS: The complete remission (CR) rate after 3 cycles was significantly better in the FLUGA arm (18% vs 9%; P = .04), but the CR/CR with incomplete recovery rate at 9 months was similar (33% vs 29%; P = .41). There were no significant differences between arms in early mortality at 30 or 60 days. Hematologic toxicities were more frequent with FLUGA, especially during induction. The 1-year overall survival (OS) rate and the median OS were superior with AZA versus FLUGA: 47% versus 27% and 9.8 months (95% confidence interval [CI], 5.6-14 months) versus 4.1 months (95% CI, 2.7-5.5 months; P = .005), respectively. The median event-free survival was 4.9 months (95% CI, 2.8-7 months) with AZA and 3 months (95% CI, 2.5-3.5 months) with FLUGA (P = .001). CONCLUSIONS: FLUGA achieved more remissions after 3 cycles, but the 1-year OS rate was superior with AZA. However, long-term outcomes were disappointing in both arms (3-year OS rate, 10% vs 5%). This study supports the use of an AZA backbone for future combinations in elderly patients with AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.