Bone lengthening is a bone regeneration technique with multiple clinical applications. One of the most common complications of this treatment is the lack of adaptation of the surrounding soft tissue to their extension. A better understanding of the mechanobiology of the tissues involved in distraction osteogenesis would allow better control of the clinical cases. Bone lengthening treatments were performed in vivo in the metatarsus of Merino sheep, measuring the distraction forces by means of an instrumented fixator. The tissue relaxation after distraction was analyzed in this study. A viscoelastic model was also applied to distraction data to assess the mechanical behavior of the tissues during the distraction phase. Tissue relaxation is similar to other bone regeneration processes which do not imply surrounding soft tissue extension, e.g. bone transport. The effects of this tissue on distraction forces are limited to the first minutes of distraction and elongations above 4% of the original length with the protocol applied. Moreover, the surrounding soft tissue initially loses some of its viscoelasticity and subsequently suffers strain hardening from day 5 of distraction until the end of the distraction phase, day 15. Finally, anatomical changes were also evidenced in the elongated limb of our specimens.
Bone lengthening and bone transport are regeneration processes that commonly rely on distraction osteogenesis, a widely accepted surgical procedure to deal with numerous bony pathologies. Despite the extensive study in the literature of the influence of biomechanical factors, a lack of knowledge about their mechanobiological differences prevents a clinical particularization. Bone lengthening treatments were performed on sheep metatarsus by reproducing the surgical and biomechanical protocol of previous bone transport experiments. Several in vivo monitoring techniques were employed to build an exhaustive comparison: gait analysis, radiographic and CT assessment, force measures through the fixation, or mechanical characterization of the new tissue. A significant initial loss of the bearing capacity, quantified by the ground reaction forces and the limb contact time with the ground, is suffered by the bone lengthening specimens. The potential effects of this anomaly on the musculoskeletal force distribution and the evolution of the bone callus elastic modulus over time are also analyzed. Imaging techniques also seem to reveal lower bone volume in the bone lengthening callus than in the bone transport one, but an equivalent mineralization rate. The simultaneous quantification of biological and mechanical parameters provides valuable information for the daily clinical routine and numerical tools development.
Collagen is a ubiquitous protein present in regenerating bone tissues that experiences multiple biological phenomena during distraction osteogenesis until the deposition of phosphate crystals. This work combines fluorescence techniques and mathematical modeling to shed light on the mechano-structural processes behind the maturation and accommodation-to-mineralization of the callus tissue. Ovine metatarsal bone calluses were analyzed through confocal images at different stages of the early distraction osteogenesis process, quantifying the fiber orientation distribution and mean intensity as fiber density measure. Likewise, a mathematical model based on the experimental data was defined to micromechanically characterize the apparent stiffening of the tissue within the distracted callus. A reorganization of the fibers around the distraction axis and increased fiber density were found as the bone fragments were gradually separated. Given the degree of significance between the mathematical model and previous in vivo data, reorganization, densification, and bundle maturation phenomena seem to explain the apparent mechanical maturation observed in the tissue theoretically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.