We found that VitD3-TolDC-MOG treatment showed a beneficial effect, not only decreasing the incidence of the disease but also reducing the severity of the clinical signs mediated by induction of regulatory T cells (Treg), as well as IL-10 production and reduction of Ag-specific lymphoproliferation. Our results support VitD3-TolDC-peptide(s) treatment as a potential strategy to restore tolerance in autoimmune diseases such as MS.
IntroductionBased on the advances in the treatment of multiple sclerosis (MS), currently available disease-modifying treatments (DMT) have positively influenced the disease course of MS. However, the efficacy of DMT is highly variable and increasing treatment efficacy comes with a more severe risk profile. Hence, the unmet need for safer and more selective treatments remains. Specifically restoring immune tolerance towards myelin antigens may provide an attractive alternative. In this respect, antigen-specific tolerisation with autologous tolerogenic dendritic cells (tolDC) is a promising approach.Methods and analysisHere, we will evaluate the clinical use of tolDC in a well-defined population of MS patients in two phase I clinical trials. In doing so, we aim to compare two ways of tolDC administration, namely intradermal and intranodal. The cells will be injected at consecutive intervals in three cohorts receiving incremental doses of tolDC, according to a best-of-five design. The primary objective is to assess the safety and feasibility of tolDC administration. For safety, the number of adverse events including MRI and clinical outcomes will be assessed. For feasibility, successful production of tolDC will be determined. Secondary endpoints include clinical and MRI outcome measures. The patients’ immune profile will be assessed to find presumptive evidence for a tolerogenic effect in vivo.Ethics and disseminationEthics approval was obtained for the two phase I clinical trials. The results of the trials will be disseminated in a peer-reviewed journal, at scientific conferences and to patient associations.Trial registration numbersNCT02618902andNCT02903537; EudraCT numbers: 2015-002975-16 and 2015-003541-26.
BackgroundTolerogenic dendritic cells (tolDC) have been postulated as a potent immunoregulatory therapy for autoimmune diseases such as multiple sclerosis (MS). In a previous study, we demonstrated that the administration of antigen-specific vitamin D3 (vitD3) tolDC in mice showing clinical signs of experimental autoimmune encephalomyelitis (EAE; the animal model of MS) resulted in abrogation of disease progression. With the purpose to translate this beneficial therapy to the clinics, we have investigated the effectivity of vitD3-frozen antigen-specific tolDC pulsed with myelin oligodendrocyte glycoprotein 40-55 peptide (f-tolDC-MOG) since it would reduce the cost, functional variability and number of leukapheresis to perform to the patients.MethodsMice showing EAE clinical signs were treated with repetitive doses of f-tolDC-MOG. Tolerogenic mechanisms induced by the therapy were analysed by flow cytometry and T cell proliferation assays.ResultsTreatment with f-tolDC-MOG was effective in ameliorating clinical signs of mice with EAE, inhibiting antigen-specific reactivity and inducing Treg. In addition, the long-term treatment was well tolerated and leading to a prolonged maintenance of tolerogenicity mediated by induction of Breg, reduction of NK cells and activation of immunoregulatory NKT cells.ConclusionsThe outcomes of this study show that the use of antigen-specific f-tolDC promotes multiple and potent tolerogenic mechanisms. Moreover, these cells can be kept frozen maintaining their tolerogenic properties, which is a relevant step for their translation to the clinic. Altogether, vitD3 f-tolDC-MOG is a potential strategy to arrest the autoimmune destruction in MS patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.