One of the critical processing parameters—the speed of the extrusion process for plasticized poly (lactic acid) (PLA)—was investigated in the presence of acetyl tributyl citrate (ATBC) as plasticizer. The mixtures were obtained by varying the content of plasticizer (ATBC, 10–30% by weight), using a twin screw extruder as a processing medium for which a temperature profile with peak was established that ended at 160 °C, two mixing zones and different screw rotation speeds (60 and 150 rpm). To evaluate the thermo-mechanical properties of the blend and hydrophilicity, the miscibility of the plasticizing and PLA matrix, Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), oscillatory rheological analysis, Dynamic Mechanical Analysis (DMA), mechanical analysis, as well as the contact angle were tested. The results derived from the oscillatory rheological analysis had a viscous behavior in the PLA samples with the presence of ATBC; the lower process speed promotes the transitions from viscous to elastic as well as higher values of loss modulus, storage modulus and complex viscosity, which means less loss of molecular weight and lower residual energy in the transition from the viscous state to the elastic state. The mechanical and thermal performance was optimized considering a greater capacity in the energy absorption and integration of the components.
The impacts on the morphological, electrical and hardness properties of thermoplastic polyurethane (TPU) plates using multi-walled carbon nanotubes (MWCNTs) as reinforcing fillers have been investigated, using MWCNT loadings between 1 and 7 wt%. Plates of the TPU/MWCNT nanocomposites were fabricated by compression molding from extruded pellets. An X-ray diffraction analysis showed that the incorporation of MWCNTs into the TPU polymer matrix increases the ordered range of the soft and hard segments. SEM images revealed that the fabrication route used here helped to obtain TPU/MWCNT nanocomposites with a uniform dispersion of the nanotubes inside the TPU matrix and promoted the creation of a conductive network that favors the electronic conduction of the composite. The potential of the impedance spectroscopy technique has been used to determine that the TPU/MWCNT plates exhibited two conduction mechanisms, percolation and tunneling conduction of electrons, and their conductivity values increase as the MWCNT loading increases. Finally, although the fabrication route induced a hardness reduction with respect to the pure TPU, the addition of MWCNT increased the Shore A hardness behavior of the TPU plates.
This work examines the morphology, mechanical and thermal properties of biocomposites based on epoxy resin-EP and fique (Furcraea andina), a native crop of South America. The EP-fique biocomposites were prepared using fique powder-FP an industrial waste generated during fique processing, nonwoven fique fiber mats-NWF and unidirectional fique fiber mats-UF oriented at 0° and 90°. The addition of fique into EP matrix restricts EP macromolecule chains movement and enhance the thermal stability of EP. SEM images showed that fique form used (powder or fiber) and mat arrangement can generate changes in the biocomposites morphology. Mechanical characterization show that fique powder and fique fibers oriented at 90° acts as fillers for the epoxy matrix while the fique fibers oriented at 0° reinforce EP matrix increasing the tensile and flexural modulus up to 5700 and 1100% respectively and tensile and flexural strength up to 277% and 820% in comparison with neat EP. The obtained results can increase the interest in researching and developing products from fique Powders and other natural fibers processing byproducts thus reducing the abundance of waste in soil and landfills and environmental concerns and suggest that the EP-fique biocomposites are promising to be used in the automotive sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.