In the current work we present two generalizations of the Parallel Tempering algorithm in the context of discrete-time Markov chain Monte Carlo methods for Bayesian inverse problems. These generalizations use state-dependent swapping rates, inspired by the so-called continuous time Infinite Swapping algorithm presented in Plattner et al. (J Chem Phys 135(13):134111, 2011). We analyze the reversibility and ergodicity properties of our generalized PT algorithms. Numerical results on sampling from different target distributions, show that the proposed methods significantly improve sampling efficiency over more traditional sampling algorithms such as Random Walk Metropolis, preconditioned Crank–Nicolson, and (standard) Parallel Tempering.
In this work we present, analyze, and implement a class of Multi-Level Markov chain Monte Carlo (ML-MCMC) algorithms based on independent Metropolis-Hastings proposals for Bayesian inverse problems. In this context, the likelihood function involves solving a complex differential model, which is then approximated on a sequence of increasingly accurate discretizations.The key point of this algorithm is to construct highly coupled Markov chains together with the standard Multi-level Monte Carlo argument to obtain a better cost-tolerance complexity than a single level MCMC algorithm. Our method extends the ideas of Dodwell, et al. "A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow," SIAM/ASA Journal on Uncertainty Quantification 3.1 (2015): 1075-1108, to a wider range of proposal distributions. We present a thorough convergence analysis of the ML-MCMC method proposed, and show, in particular, that (i) under some mild conditions on the (independent) proposals and the family of posteriors, there exists a unique invariant probability measure for the coupled chains generated by our method, and (ii) that such coupled chains are uniformly ergodic. We also generalize the cost-tolerance theorem of Dodwell et al., to our wider class of ML-MCMC algorithms. Finally, we propose a self-tuning continuation-type ML-MCMC algorithm (C-ML-MCMC). The presented method is tested on an array of academic examples, where some of our theoretical results are numerically verified. These numerical experiments evidence how our extended ML-MCMC method is robust when targeting some pathological posteriors, for which some of the previously proposed ML-MCMC algorithms fail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.