The ability of the fungal pathogen Candida albicans to undergo a yeast-to-hypha transition is believed to be a key virulence factor, as filaments mediate tissue damage. Here, we show that virulence is not necessarily reduced in filament-deficient strains, and the results depend on the infection model used. We generate a filament-deficient strain by deletion or repression of EED1 (known to be required for maintenance of hyphal growth). Consistent with previous studies, the strain is attenuated in damaging epithelial cells and macrophages in vitro and in a mouse model of intraperitoneal infection. However, in a mouse model of systemic infection, the strain is as virulent as the wild type when mice are challenged with intermediate infectious doses, and even more virulent when using low infectious doses. Retained virulence is associated with rapid yeast proliferation, likely the result of metabolic adaptation and improved fitness, leading to high organ fungal loads. Analyses of cytokine responses in vitro and in vivo, as well as systemic infections in immunosuppressed mice, suggest that differences in immunopathology contribute to some extent to retained virulence of the filament-deficient mutant. Our findings challenge the long-standing hypothesis that hyphae are essential for pathogenesis of systemic candidiasis by C. albicans.
The primary cilium is an organelle present in most adult mammalian cells and is thought of as an antenna for detection of a variety of signals. Here we use intact mouse pancreatic islets of Langerhans to investigate signalling properties of the primary cilium in β-cells. Using cilia-targeted Ca2+ indicators we find that the resting Ca2+ concentration in the cilium is lower than that of the cytosol, and we uncover a Ca2+ extrusion mechanism in the cilium that effectively insulates the cilium from changes in cytosolic Ca2+. Stimuli that give rise to pronounced cytosolic Ca2+ concentration increases, such as glucose- and depolarization-induced Ca2+ influx, and mobilization of Ca2+ from the ER, was accompanied by minor increases in cilia Ca2+ concentrations that were spatially restricted to a small compartment at the base. Conversely, we observe pronounced Ca2+ concentration changes in the primary cilia of islet β-cells that do not propagate into the cytosol and show that paracrine GABA signalling via cilia-localized GABA- B1-receptors is responsible for this Ca2+ signalling. Finally, we demonstrate that the cilia response to GABA involves ligand-dependent transport of GABA-B1 receptors into the cilium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.