The reaction of Mn(O(2)CPh)(2).2H(2)O and PhCO(2)H in EtOH/MeCN with NBu(n)(4)MnO(4) gives (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(9)(H(2)O)] (4) in high yield (85-95%). Complex 4 crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -129 degrees C: a = 17.394(3) Å, b = 19.040(3) Å, c = 25.660(5) Å, beta = 103.51(1) degrees, V = 8262.7 Å(3), Z = 4; the structure was refined on F to R (R(w)) = 9.11% (9.26%) using 4590 unique reflections with F > 2.33sigma(F). The anion of 4 consists of a [Mn(4)(&mgr;(3)-O)(2)](8+) core with a "butterfly" disposition of four Mn(III) atoms. In addition to seven bridging PhCO(2)(-) groups, there is a chelating PhCO(2)(-) group at one "wingtip" Mn atom and terminal PhCO(2)(-) and H(2)O groups at the other. Complex 4 is an excellent steppingstone to other [Mn(4)O(2)]-containing species. Treatment of 4 with 2,2-diethylmalonate (2 equiv) leads to isolation of (NBu(n)(4))(2)[Mn(8)O(4)(O(2)CPh)(12)(Et(2)mal)(2)(H(2)O)(2)] (5) in 45% yield after recrystallization. Complex 5 is mixed-valent (2Mn(II),6Mn(III)) and contains an [Mn(8)O(4)](14+) core that consists of two [Mn(4)O(2)](7+) (Mn(II),3Mn(III)) butterfly units linked together by one of the &mgr;(3)-O(2)(-) ions in each unit bridging to one of the body Mn atoms in the other unit, and thus converting to &mgr;(4)-O(2)(-) modes. The Mn(II) ions are in wingtip positions. The Et(2)mal(2)(-) groups each bridge two wingtip Mn atoms from different butterfly units, providing additional linkage between the halves of the molecule. Complex 5.4CH(2)Cl(2) crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -165 degrees C: a = 16.247(5) Å, b = 27.190(8) Å, c = 17.715(5) Å, beta = 113.95(1) degrees, V = 7152.0 Å(3), Z = 4; the structure was refined on F to R (R(w)) = 8.36 (8.61%) using 4133 unique reflections with F > 3sigma(F). The reaction of 4 with 2 equiv of bpy or picolinic acid (picH) yields the known complex Mn(4)O(2)(O(2)CPh)(7)(bpy)(2) (2), containing Mn(II),3Mn(III), or (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(pic)(2)] (6), containing 4Mn(III). Treatment of 4 with dibenzoylmethane (dbmH, 2 equiv) gives the mono-chelate product (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(8)(dbm)] (7); ligation of a second chelate group requires treatment of 7 with Na(dbm), which yields (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(dbm)(2)] (8). Complexes 7 and 8 both contain a [Mn(4)O(2)](8+) (4Mn(III)) butterfly unit. Complex 7 contains chelating dbm(-) and chelating PhCO(2)(-) at the two wingtip positions, whereas 8 contains two chelating dbm(-) groups at these positions, as in 2 and 6. Complex 7.2CH(2)Cl(2) crystallizes in monoclinic space group P2(1) with the following unit cell parameters at -170 degrees C: a = 18.169(3) Å, b = 19.678(4) Å, c = 25.036(4) Å, beta = 101.49(1) degrees, V = 8771.7 Å(3), Z = 4; the structure was refined on F to R (R(w)) = 7.36% (7.59%) using 10 782 unique reflections with F > 3sigma(F). Variable-temperature magnetic susceptibility studies have been carried out on powdered samples of complexes 2...
The photophysical properties of the chromophore−quencher complexes, fac-[(4,4‘-R2bpy)ReI(CO)3(LA)] n + (4,4‘-R2bpy = 4,4‘-R2-2,2‘-bipyridine, R = Me or t Bu, and LA = the quinone acceptor ligands, benz[g]isoquinoline-5,10-dione (BIQD), 2-oxy-1,4-naphthoquinone anion (ONQ-), 1/2 2,6-dihydroxyanthraquinone dianion (AFA2-), or the pyridinium acceptor, 1-methyl-6-oxyquinoline (OQD)) in 1,2-dichloroethane are described. Following ReI → 4,4‘-R2bpy metal-to-ligand charge transfer (MLCT) excitation, intramolecular electron transfer leads to the transients, fac-[(4,4‘-R2bpy)ReII(CO)3(LA•-)] n+. They have been characterized by emission spectral fitting and transient absorption measurements and, for LA = OQD, by transient infrared measurements. As shown by analysis of excited-state emission, there is weak-to-moderate electronic coupling between the electron donor and acceptor sites in the transients with H DA varying from 153 cm-1 for the BIQD complex to 3.9 cm-1 for the OQD complex. The transients are redox-separated (RS) states with the electronic configurations dπ5πLA* for BIQD or σ(Re−O)1πLA*1 for ONQ-, AFA -, and OQD. They are weak emitters and return to the ground state largely by nonradiative decay which occurs by back electron transfer (k ET). Reasonable agreement has been reached between k ET and values calculated from kinetic parameters derived by emission spectral fitting and excited-state decay. The RS states for the AFA2- and OQD complexes are remarkably long-lived (τ = 4 μs for LA = AFA2- in DCE at 296 K and 16 μs for LA = OQD in DCE at 296 K) due to orbital and spin restrictions on back electron transfer.
The synthesis, structure, and photophysical properties of a new family of tetranuclear FeRe 3 chromophore-quencher complexes having the general form [Fe(pyacac) 3(Re(bpy')(CO) 3) 3](OTf) 3 (where pyacac = 3-(4-pyridyl)-acetylacetonate and bpy' is 4,4',5,5'-tetramethyl-2,2'-bipyridine (tmb, 1), 2,2'-bipyridine (bpy, 2), and 4,4'-diethylester-2,2'-bipyridine (deeb, 3)) are reported. Time-resolved emission data acquired in room-temperature CH 2Cl 2 solutions exhibited single exponential decay kinetics with observed lifetimes of 450 +/- 30 ps, 755 +/- 40 ps, and 2.5 +/- 0.1 ns for complexes 1, 2, and 3, respectively. The emission in each case is assigned to the decay of the Re (I)-based (3)MLCT excited state; the lifetimes are all significantly less than the corresponding AlRe 3 analogues (2250 +/- 100 ns, 560 +/- 30 ns, and 235 +/- 20 ns for 4, 5, and 6, respectively), which were also prepared and characterized. Electron transfer is found to be thermodynamically unfavorable for all three Re (I)-containing systems: this fact coupled with the absence of optical signatures for the expected charge-separated photoproducts in the time-resolved differential absorption spectra and favorable spectral overlap between the donor emission and the acceptor absorption profiles implicates dipolar energy transfer from the Re (I)-based excited state to the high-spin Fe (III) core as the dominant quenching pathway in these compounds. Details obtained from the X-ray structural data of complex 2 allowed for a quantitative application of Forster energy transfer theory by systematically calculating the separation and spatial orientation of the donor and acceptor transition moment dipoles. Deviations between the calculated and observed rate constants for energy transfer were less that a factor of 3 for all three complexes. This uncommonly high degree of precision testifies to both the appropriateness of the Forster model as applied to these systems, as well as the accuracy that can be achieved in quantifying energy transfer rates if relative dipole orientations can be accounted for explicitly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.